摘要
应用锥上不动点定理,给出了奇异非线性二阶m-点边值问题x″+a(t)xλ(t)=0,t∈(0,1)x(0)=0,x(1)=∑m-2i=1aix(ξi)存在C[0,1]正解的充分必要条件.这里ξ∈(0,1),i=1,2,…,m-2,0<ξ1<ξ2<…<ξm-2<1,ai∈R(i=1,2,…m-2),0<∑m-2i=1aiξi<1,a∈C((0,1),[0,∞)),λ∈(1,∞).
By means of the fixed point theorem on cons, a necessary and sufficient condition for the existence of C[0, 1] positive solutions is given to singular boundary value problems of a class of second order m-point superlinear differential equations
{x″+a(t)x^λ(t)=0,t∈(0,1)
x(0)=0,x(1)=∑i=1^m-2aix(ξi)
Where ξ∈(0,1),is a constant 0〈ξ1〈ξ2〈…〈ξm-2〈1,ai∈R(i=1,2,…m-2),0〈∑i=1^m-2aiξi〈1,a∈C((0,1),[0,∞)),λ∈(1,∞).
出处
《兰州交通大学学报》
CAS
2007年第4期144-146,158,共4页
Journal of Lanzhou Jiaotong University
基金
甘肃省教育厅科研项目(0712B-02)