期刊文献+

一种基于离散Hopfield神经网络的RTOS功耗优化方法 被引量:4

A Power Optimization Approach to Real-Time Operating Systems Based on Discrete Hopfield Neural Networks
下载PDF
导出
摘要 RTOS(Real-Time Operating System,实时操作系统)是SoC(System-on-a-Chip,系统芯片或片上系统)的一个重要组成部分,其功耗一般约占整个系统功耗30~40%的比例,而基于软/硬件划分的RTOS功耗优化方法(简称RTOS-Power划分)能够明显地减少SoC的功耗.因此,文中首先引入了RTOS-Power划分问题的一个新模型,这有助于理解RTOS-Power划分的本质.然后,提出了一种基于离散Hopfield神经网络的RTOS-Power划分方法,重新定义了神经网络的神经元表示、能量函数、运行方程和系数.最后,对该方法进行了仿真实验,并同遗传算法和蚂蚁算法进行了性能比较.实验结果表明:该文提出的方法能够以相对较小的代价(FPGA开销小于4K个可编程逻辑块)取得高达60%的功耗节省,同时,与纯软件实现的RTOS相比,系统性能也得到了相应的提高.  The RTOS (Real-Time Operating System) is a critical component in the SoC (System-on-a-Chip), which consumes the 30~40% of total system energy in average. Power optimization based on hardware-software partitioning of a RTOS (RTOS-Power partitioning) can significantly reduce the energy consumption of a SoC. This paper presents a new model for RTOS-Power partitioning, which helps in understanding the essence of the RTOS-Power partitioning techniques. A discrete Hopfield neural network approach for implementing the RTOS-Power partitioning is proposed, where a novel neuron expression, energy function, operating equation and coefficients of the neural network are redefined. Simulations are carried out with comparison to generic algorithm and ant algorithm. Experimental results demonstrate that the proposed method can achieve higher energy savings up to 60% at relatively low costs of less than 4K PLBs while increasing the performance compared to the SoC-RTOS realized purely in software.
出处 《计算机学报》 EI CSCD 北大核心 2007年第9期1573-1579,共7页 Chinese Journal of Computers
基金 国家自然科学基金(60572026)资助
关键词 HOPFIELD神经网络 功耗优化 RTOS 软/硬件划分 SOC Hopfield neural network power optimization RTOS hardware-software partitioning SoC
  • 相关文献

参考文献17

  • 1Jerraya A A,Yoo S,Verest D,When N.Embedded Software for SoC.Netherlands:Kluwer Academic Publishers,2003
  • 2Dick R P.Multi-objective synthesis of low-power real-time distributed embedded systems[Ph.D.dissertation].Department of Electrical Engineering,Princeton University,New Jersey,USA,2002
  • 3Li T,John L K.Run-time modeling and estimation of operating system energy consumption//Proceedings of the ACM International Conference on Measurement and Modeling of Computer Systems.San Diego,California,USA,2003:160-171
  • 4Tan T K,Raghunathan A,Jha N K.Energy macromodeling of embedded operating systems.ACM Transactions on Embedded Computing Systems,2005,4(1):231-254
  • 5Gupta R K,De Micheli G.Hardware-software so-synthesis for digital systems.IEEE Design and Test of Computers,1993,10(3):29-41
  • 6Eles P,Peng Z,Kuchcinski K,Doboli A.System level hardware/software partitioning based on simulated annealing and tabu search.Design Automation for Embedded Systems,1997,2(1):5-32
  • 7Saha D,Mitra R S,Basu A.Hardware/software partitioning using genetic algorithm//Proceedings of the International Conference on VLSI Design.Hyderabad,India,1998:155-159
  • 8Filho F C,Maciel P,Barros E.A petri nets based approach for hardware/software partitioning.Integrated Circuits and System Design,2001,8(6):72-77
  • 9熊志辉,李思昆,陈吉华.遗传算法与蚂蚁算法动态融合的软硬件划分[J].软件学报,2005,16(4):503-512. 被引量:87
  • 10Arató P,Juhász S,Mann Z (A),Papp D.Hardware-software partitioning in embedded system design//Proceedings of the IEEE International Symposium on Intelligent Signal Processing.Budapest,Hungary,2003:63-69

二级参考文献15

  • 1Gupta RK, Micheli GD. System-Level synthesis using re-programmable components. In: Hugo DM, Herman B, eds. Proc. of the European Conf. on Design Automation (EDAC). Brussels: IEEE Computer Society Press, 1992.2-7.
  • 2Garey MR, Johnson DS. Computers and Intractability: A Guide to the Theory ofNP-Completeness. W.H.Freeman Company, 1979.
  • 3Kastner R. Synthesis techniques and optimizations for reconfigurable systems [Ph.D. Thesis]. Los Angeles: University of California, 2002.
  • 4Ernst R, Henkel J, Benner T. Hardware-Software cosynthesis for microcontrollers. IEEE Design & Test of Computers, 1993,10(4):64-75.
  • 5Saha D, Mitra RS, Basu A. Hardware software partitioning using genetic algorithm. In: Agrawal V, Mahabala HN, eds. Proc. of the 10th Int'l Conf. on VLSI Design. Hyderabad: IEEE Computer Society Press, 1997. 155-160.
  • 6Peng Z, Kuchcinski K. An algorithm for partitioning of application specific systems. In: Courtois B, eds. Proc. of the European Conf. on Design Automation (EDAC). Paris: IEEE Computer Society Press, 1993.316-321.
  • 7Else P, Peng Z, Kuchcinski K, Doboli A. System level hardware/software partitioning based on simulated annealing and tabu search.Design Automation of Embedded Systems, 1997,2(1):5-32.
  • 8Kalavade A, Lee EA. The extended partitioning problem: hardware/software mapping, scheduling, and implementation-bin selection. Design Automation of Embedded Systems, 1997,2( 1 ): 125-163.
  • 9Wang G, Gong WR, Kastner R. A new approach for task level computational resource bi-partitioning. In: Gonzalez TF eds. Proc. of the IASTED Int'l Conf. on Parallel and Distributed Computing and Systems (PDCS). ACTA Press, 2003.434-444.
  • 10Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents. IEEE Trans. on Systems, Man and Cybernetics, Part-B, 1996,26(1):29-41.

共引文献86

同被引文献37

引证文献4

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部