期刊文献+

应用NCCLS EP5-A方案评价唾液酸试剂盒的精密度

Application of NCCLS EP5-A method in the evaluation of precision of SA kit
下载PDF
导出
摘要 目的评价测定唾液酸(SA)试剂盒的精密度。方法利用NCCLS EP5-A方案评价唾液酸的精密度。结果正常和异常血清的批内变异系数分别为0.9%和1.9%,批间变异系数分别为1.2%和1.7%,总变异系数为1.6%和2.6%。结论SA试剂盒精密度良好,准确可靠且操作简便。 Objective To evaluate the precision of SA (salivary acid) kit by NCCLS EP5-A method. Methods The precision of the SA kit was evaluated according to EP5-A issued by the National Committee on Clinical Laboratory Standards (NCCLS). Results The CVs of within-run precisions were 0.9 % and 1.9 % respectively at normal and abnormal levels. The CVs of between-run and total precisions at normal level were 1.2% and 1.6% respectively. The CVs of between-run and total precisions at abnormal level were 1.7% and 2.6 % respectively. Conclusion The precision of SA kit could fulfill the requirements of clinical laboratory.
作者 陈敏 张瑾
出处 《淮海医药》 CAS 2007年第6期507-508,共2页 Journal of Huaihai Medicine
关键词 血清唾液酸 精密度 EP5-A Sialis acid Precison EP5-A
  • 相关文献

参考文献4

  • 1汤新之 崔乃杰.恶性肿瘤的标志物.临床生物化学,1995,5(40):645-661.
  • 2National Committee for Clinical Laboratory Standards.Procedures and devices for the collection of diagnostic blood specimens by wkin puncture;Approved standard-fourth edition.NCCLS document H4-A4(ISBN 1-56238-382.5).1999.
  • 3卢正鼎,王琼.基于相似度的离群模式发现模型[J].华中科技大学学报(自然科学版),2005,33(1):22-24. 被引量:12
  • 4Pei J.Han J.Constrained frequent pattern mining:a pattern growth view[J].ACM SIGKDD(Special Issue on Constrained Data Mining),2002,4(1)131-39.

二级参考文献5

  • 1Breunig M M, Kriegel H P, Ng R T, et al. LOF: Identifying density-based local outliers [ J ]. ACM SIGMOD Conference Proceedings, 2000, 29(2): 93-104.
  • 2Chen Z, Fu A, Tang J. Modeling and efficient mining of intentional knowledge of outliers [ A ]. In: Srikurnar K, Bhasker B, eds. Proceedings of the Seventh International Database Engineering and Applications Symposium Conference[C]. Hong Kong, 2003. Washington DC: IEEE Computer Society, 2003. 44-53.
  • 3Knorr E M, Ng R T. Finding intensional knowledge of distance-based outliers[A]. In: Atkinson M P, Orkiwsja M E, eds. Proc of the 25th VLDB Conference[C]. Edin Burgh, 1999. San Francisco. Morgan Kaufmann. 211-222.
  • 4Knorr E M, Ng R T. Algorithms for mining distancebased outliers in large datasets[A]. In: Ashish Gupta, Oded Shmueli, eds. Proc of the 24^th VLDB Conference [C]. New York, 1998. San Francisco: Morgan Kanfmann, 1998. 392-403.
  • 5Pei J, Han J. Constrained frequent pattern mining: a pattern-growth view[J]. ACM SIGKDD (Special Issue on Constrained Data Mining), 2002, 4(1). 31-39.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部