期刊文献+

烟酸的低温热容和标准摩尔生成焓

Low-Temperature Heat Capacities and Standard Molar Enthalpy of Formation of Nicotinic Acid
下载PDF
导出
摘要 利用精密自动绝热热量计测量了分析纯烟酸在78~400K温区的低温热容.用最小二乘法将实验摩尔热容对温度进行拟合,得到了热容随温度变化的多项式方程.用此方程进行数值积分,得到在此温区每隔5K的舒平热容值和相对于298.15K时的热力学函数值.利用精密静止氧弹燃烧热量计测定了烟酸在298.15K时的恒体积燃烧能为·cU=-(24528.3±16.1)J·g-1.依据物质燃烧焓定义计算出烟酸的标准摩尔燃烧焓为:ΔcHm=-(3019.05±1.98)kJ·mol-1.最后,依据Hess定律计算出烟酸的标准摩尔生成焓为:ΔfHm=-(56.76±2.13)kJ·mol-1. Low-temperature heat capacities of nicotinic acid (C6H5NO2) were measured by a precision automated adiabatic calorimeter over the temperature range from 78 to 400 K. A polynomial equation of the heat capacities as a function of the temperature was fitted by the least square method. Based on the fitted polynomial, the smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated at the interval of 5 K. The constant-volume energy of combustion of nicotinic acid at T=298.15 K was measured by a precision oxygen-bomb combustion calorimeter to be △cU=-(24528.3±16.1)J·g^-1. The standard molar enthalpy of combustion for the compound was determined to be ΔcHm^⊙=-(3019.05±1.98)kJ·mol^-1, according to the definition of the combustion heat. Finally, the standard molar enthalpy of formation for the compound was determined to be ΔfHm^⊙=-(56.76±2.13)kJ·mo^l-1 , in accordance with Hess law.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2007年第18期1940-1946,共7页 Acta Chimica Sinica
基金 国家自然科学基金(No.20673050)资助项目.
关键词 烟酸 绝热量热法 低温热容 氧弹燃烧量热法 标准摩尔生成焓 nicotinic acid adiabatic calorimetry low-temperature heat capacity oxygen-bomb combustion calorimetry standard molar enthalpy of formation
  • 相关文献

参考文献10

  • 1Wang,S.-X.;Tan,Z.-C.;Di,Y.-Y.;Xu,F.;Wang,M.-H.;Sun,L.-X.;Zhang,T.J.Therm.Anal Calorim.2004,76,335.
  • 2Di,Y.-Y.;Cui,Y.-C.;Tan,Z.-C.J.Chem.Eng.Data 2006,51,1551.
  • 3邸友莹,谭志诚,李彦生.稀土高氯酸盐-谷氨酸配合物[Pr_2(L-α-Glu)_2(ClO_4)(H_2O)_7](ClO_4)_3·4H_2O的低温热容和热化学研究[J].化学学报,2006,64(13):1393-1401. 被引量:3
  • 4Donald,G.A.J.Phys.Chem.Ref.Data 1993,22(6),1441.
  • 5Di,Y.-Y.;Tan,Z.-C.;Sun,X.-H.;Wang,M.-H.;Xu,F.;Liu,Y.-F.;Sun,L.-X.;Zhang,H.-T.J.Chem.Thermodyn.2004,36,79.
  • 6Yang,X.-W.;Chen,S.-P.;Gao,S.-L.Instrum.Sci.Technol.2002,30,311.
  • 7Popov,M.W.Thermometry and Calorimetry,Moscow University Publishing House,Moscow,1954,p.331(in Russian).
  • 8Rossini,F.D.Experimental Thermochemistry,Vol.1,Interscience,New York,1956,p.398.
  • 9Cox,J.D.;Wagman,D.D.;Medvedev,V.A.CODATA Key Values for Thermodynamics,Hemisphere,New York,1989,p.547.
  • 10Cox,J.D.Chem.Thermodyn.1978,10,903.

二级参考文献14

  • 1王瑞瑶,高峰,金天柱.稀土-氨基酸配合物的结构化学[J].化学通报,1996(10):14-20. 被引量:42
  • 2Di,Y.-Y.; Tan,Z.-C.; Gao,S.-L.; Wang,S.-X.J.Chem.Eng.Data 2004,49,965.
  • 3刘振海.分析化学手册,Ⅳ,热分析,化学工业出版社,北京,1994,p.55.
  • 4邢军 谭志诚 邸友莹 孙晓红 孙立贤 张涛.化学学报,2004,62:2414-2414.
  • 5Rychly,R.; Pekarek,V.J.Chem.Thermodyn.1977,9,391.
  • 6Weast,R.C.Handbook of Chemistry and Physics,CRCPress,Florida,1989,p.D-121.
  • 7Dean,J.A.Lange's Handbook of Chemistry,12th ed.,McGraw-Hill Book Co.,New York,1979,pp.2~9.
  • 8Sakiyama,M.; Seki,S.Bull.Chem.Soc.Jpn.1975,48,2203.
  • 9Brittain,H.G.Inorg.Chem.1979,18,1740.
  • 10Yang,W.-C.; Wang,R.-Y.; Jin,T.-Z.; Zhou,Z.-Y.; Zhou,X.-G.J.Rare Earths 1998,16,11.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部