期刊文献+

Lyapunov矩阵微分方程解的新估计

New Estimates for the Solution of the Lyapunov Matrix Differential Equation
下载PDF
导出
摘要 采用控制不等式方法,并结合正规矩阵的相关性质,我们给出系统矩阵A是正规矩阵的Lyapunov矩阵微分方程解的特征值的和(包括迹)的界。在极限情况下,这些结果可以变为Lyapunov矩阵代数方程的界。数值算例表明该结果的有效性。 By using.majorization inequality,and combining the correlated property of normal matrix, bounds for summations of the eigenvalues (including the trace) of the solution of the Lyapunov matrix differential Equation which the system matrix A is normal, are presented. In the limiting cases, the results reduce to bounds of the Lyapunov matrix algebraic equation. The effectiveness of results is illustrated by a numerical example.
作者 向晖 刘建州
出处 《计算技术与自动化》 2007年第3期41-43,共3页 Computing Technology and Automation
基金 国家自然科学基金(10671164) 湖南省教育厅重点科研基金(06A070)
关键词 Lyapunov矩阵微分方程 特征值的界 正规矩阵 控制不等式 Lyapunov matrix differential equation eigenvalue bounds normal matrix majorization inequality
  • 相关文献

参考文献7

  • 1S. Barnett and C. Storey, Matrix Methods in Stability Theory. New York: Barnes and Noble, 1970.
  • 2T. Mori, E. Noldus and M. Kuwahara, A way to stabilize linear systems with delayed state, Automatica, 1983,19:571 -574.
  • 3易宜连.鲁棒控制系统的正规矩阵设计法[J].华东交通大学学报,1996,13(4):12-15. 被引量:3
  • 4T. Mori, N. Fukuma, and M. Kuwahara, On the Lyapunov matrix differential equaion, IEEE Trans Automat Contr. ,1986, 31(9): 868-869.
  • 5T. Mori, N. Fukuma, and M. kuwahara, Bounds in the Lyapunov matrix differential equation. IEEE Trans Automat Contr. ,1987, 32(1): 55-57.
  • 6Y. Fang, K. Loparo and X. Feng, New estimates for solution of Lyapunov equation, IEEE Trans Automat Contr. , 1997, 42 (3):408-411.
  • 7A.W. Marshall and Olkin, Inequalities: Theory of Majorization and Its application, Academic Press, New York, 1979.

二级参考文献1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部