摘要
采用控制不等式方法,并结合正规矩阵的相关性质,我们给出系统矩阵A是正规矩阵的Lyapunov矩阵微分方程解的特征值的和(包括迹)的界。在极限情况下,这些结果可以变为Lyapunov矩阵代数方程的界。数值算例表明该结果的有效性。
By using.majorization inequality,and combining the correlated property of normal matrix, bounds for summations of the eigenvalues (including the trace) of the solution of the Lyapunov matrix differential Equation which the system matrix A is normal, are presented. In the limiting cases, the results reduce to bounds of the Lyapunov matrix algebraic equation. The effectiveness of results is illustrated by a numerical example.
出处
《计算技术与自动化》
2007年第3期41-43,共3页
Computing Technology and Automation
基金
国家自然科学基金(10671164)
湖南省教育厅重点科研基金(06A070)