期刊文献+

基于粗配准SAR图像变化检测方法 被引量:1

Change Detection Method Based on Rough Registration SAR Images
下载PDF
导出
摘要 合成孔径雷达(SAR)图像由于受相干斑噪声的影响,在对其进行配准及变化检测时,经典的适于光学图像的方法效果不佳。该文先通过选取少量控制点实现SAR图像的粗配准,然后利用直方图规定化对SAR图像进行图像灰度匹配处理,在此基础上根据待检测目标特性选取适当的阈值,利用滑动矩形窗实现改进的基于图像差值的变化检测。真实SAR图像的实验结果表明,该方法能有效克服图像照度差异和粗配准误差的影响,取得满意的检测结果。 Synthetic aperture radar (SAR) is affected by speckle noise seriously. It is difficult to use the classic means for optical images when we perform SAR images registration and change detection. In this paper a few control points(CPs ) are chosen to perform images registration firstly, and then histogram regulation is adopted to match luminance between images. At last, a proper threshold is selected and a glide rectangle window is utilized to perform change detection. Experiments on real SAR images demonstrate that this means can eliminate the image luminance difference and registration error and verifies its superiority.
出处 《现代雷达》 CSCD 北大核心 2007年第9期39-41,共3页 Modern Radar
关键词 合成孔径雷达 变化检测 粗配准 直方图 SAR change detection rough registration histogram
  • 相关文献

参考文献4

  • 1Barbara Zitova, Jan Flusser. Image registration methods: a survey [ J ]. Image and Vision Computing, 2003 (21 ) :977 - 1000.
  • 2Oliver C, Quegan S. Understanding synthetic aperture radar images[ M]. Norwood: Artech House Inc,1998.
  • 3Lorenzo Bruzzone, Diego Fernandez Prieto. Automatic analysis of the difference image for unsupervised change detection[J]. IEEE Transaction on Geosciences and remote sensing, 2000,38(3) :1171 - 1182.
  • 4Lorenzo Bruzzone, Diego Fernandez Prieto. An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing Images [ J ]. IEEE Transaction on image processing, 2002, 11 (4) :1057 -7149.

同被引文献16

  • 1李忠新,茅耀斌,王执铨.基于对数极坐标映射的图像拼接方法[J].中国图象图形学报(A辑),2005,10(1):59-63. 被引量:15
  • 2康欣,韩崇昭,杨艺.基于结构的SAR图像配准[J].系统仿真学报,2006,18(5):1307-1310. 被引量:13
  • 3David G.Lowe.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 4Ying Yang,Xin Gao.Remote sensing image registration via active contour model[J].International Journal of Electronics and Communications,2009,63(4):227-234.
  • 5Cole-Rhodes A A,Johnson K L,Le Moigne J.Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient[J].IEEE Transactions on Image Processing,2003,12(12):1495-1511.
  • 6Pluim J P W,Mnintz J B A,Viergever M A.Image registration by maximization of combined mutual information and gradient information[J].IEEE Transaction on Medical Imasing,2000,19(8):809-814.
  • 7Le Moigne J,Campbell W J,Cromp R F.An automated parallel image registration technique based on the correlation of wavelet features[J].IEEE Transactions on Geoscience and Remote Sensing,2002,40(8):1849-1864.
  • 8Kuglin C,Hines D.The phase correlation image alignment method[C] //Proceedings IEEE International Conference on Cybernetics and Society.[S.1.] :IEEE Press,1975.
  • 9Kazuyuki Miyazawa,Koichi Ito,Takafumi Aoik,et al.An effective approach for iris recognition using phase-based image matching[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(10):1741-1756.
  • 10Reddy B S,Chatterj B N.An FFT-based technique for translation,rotation,and scale-invariant image registration[J].IEEE Transactions on Image Processing,1996,5(8):1266-1271.

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部