期刊文献+

超混沌系统反馈控制耦合同步

Coupled Synchronization for Feedback Control Hyper-chaotic Systems
下载PDF
导出
摘要 基于混沌系统的最大Lyapunov指数与耦合同步增益的关系,确定一大类混沌系统的线性耦合同步时,反馈控制系数需要满足的取值范围,该种新型的判别方法简单而且在工程上易于实现.由于超混沌系统在保密通信中具有更强的抗破译能力,因而考虑以超混沌Chen系统以及超混沌Q i系统为例,数值模拟结果验证了该方法的有效性以及普适性. Based on the relation between the largest Lyapunov exponent of chaos systems and the control coefficients through linear feedback controlled, some new sufficient conditions of stability for linearly coupled chaotic synchronization are attained. This work is applied to attain chaos synchronization for two identical new hyper-cbaotic Chen systems and for two identical new hyper-chaotic systems with any initial conditions. Numerical simulations are shown to verify the effectiveness of the chaos synchronization method.
出处 《南京师范大学学报(工程技术版)》 CAS 2007年第3期6-12,共7页 Journal of Nanjing Normal University(Engineering and Technology Edition)
基金 国家自然科学基金(60174005) 江苏省自然科学基金(BK2001054)资助项目
关键词 最大LYAPUNOV指数 线性反馈耦合同步 超混沌系统 耦合系数 the largest Lyapunov exponent, linearly coupled chaos synchronization, hyper-chaotic system, the coupling coefficients
  • 相关文献

参考文献3

二级参考文献53

  • 1T S Parker, L O Chua. Practical Numerical Algorithms for Chaotic Systems[M]. New York: Springer Verlag World Publishing Corp, 1992.
  • 2A Wolf. Determining Lyapunov exponent from a timeseries[J].Physica D, 1985, 16: 285~317.
  • 3P Grassberger and I Procaccia. Measuring the strangeness of strange attractors[ J ]. Physica D, 1983,9:189~ 208.
  • 4E N Lorenz. Deterministic Non - periodic Flow [ J ]. J Atomas Sci, 1963,20:130~ 141.
  • 5K Popp. P Stelter. Non- linear Dynamics in Engineering systems[M]. New York: Springer Verlag World Publishing Corp,1990.
  • 6Lorenz E N 1963 J. Atmos Sci. 20 130
  • 7Chen G R and Ueta T 1999 Int. J. Bifur. Chaos 9 1465
  • 8Lu J H, Chen G R and Celikovsky S 2002 Int. J. Bifur.Chaos 12 2917
  • 9Celikovsky S and Chen G R 2005 Chaos, Solitons and Fractals 26 1271
  • 10Chen G R, Mao Y B and Chui C K 2004 Chaos, Solitons and Fractals 21 749

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部