期刊文献+

应变强化模型的安定准则研究 被引量:2

STUDY ON THE SHAKEDOWN OF STRAIN-HARDENING STRUCTURES
下载PDF
导出
摘要 基于Melan经典的安定理论和von Mises屈服准则,建立了塑性应变强化条件下结构安定的数学模型,根据与时间无关的应力场的特性,对结构中与时间无关的应力场进行了合理的数学变换,将其与载荷变化系数联系起来,推导出与其对应的结构安定极限范围的表达式,给出塑性应变强化模型安定性存在的简化条件.该结论有利于简化应变强化条件下结构的安定分析. An analytical method of structures shakedown under plastic strain-hardening conditions has been developed based on Melan's theorem and Von Mises yield criterion. Relation between time-independent stresses field and elastic stresses subjected to external loadings is established based on mathematical approach, then the shakedown expressions of structures are given. Thus, the simple shakedown theorem of structure under external loading is presented according to the time-independent stresses and proved by Melan's theorem. The theorem is convenient to evaluate shakedown limit of structures without tedious computations compared with the traditional method. The theorem is propitious to simplify the shakedown analysis of strain-hardening structures by the mathematical example.
出处 《固体力学学报》 EI CAS CSCD 北大核心 2007年第3期229-234,共6页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金(10672134) 航空科学基金(01C53012)资助
关键词 安定极限 残余应力场 接触 shakedown limited, residual stress field, contact
  • 相关文献

参考文献12

  • 1Matsumoto Y,Magda D,Hoeppner D W,Kim T Y.Effect of machining processes on the fatigue strength of hardened AISI 4340 steel[J].ASME Journal of Engineering for Industry,1991(113):154-159.
  • 2Smith S R.An investigation into the effects of hard turning surface integrity on component service life[D].PhD thesis,Georgia:Georgia Institute of Technology,2001.
  • 3Melan E.Theorie statisch unbestimmter tragwerke aus idealpastischem baustoff[J].Sitzungsbericht der Akademie der Wissenscha ften (Wien) Abt,IIA195,1938:145-195.
  • 4Koiter W T.General theorems for elastic-plastic bodies[M].In:Sneddon I N and Hill R (eds).Progress in solid Mechanics,North-Holland,Amsterdam,1960,1:165-221.
  • 5Pham Duc Chinh.Shakedown kinematic theorem for elastic-perfectly plastic bodies[ J ].International Journal of Plasticity,2001,17:773-780.
  • 6冯西桥,刘信声.不同应变强化模型下结构安定性的研究[J].力学学报,1994,26(6):719-723. 被引量:7
  • 7Tin Loi F,Grundy P.Deflection stability of work hardening structures[J].Journal of Structural Mechanics,1978,6:331-347.
  • 8Maier G.Shakedown matrix theory allowing for work hardening and second order geometric effects[C].in:Proceeding of the International Conference on Foundations of Plasticity.Warsaw,1972,417-433.
  • 9Bower A F.Cyclic hardening properties of hard-drawn copper and rail steel[J].Journal of the Mechanics and Physics of Solids,1989,37:455-470.
  • 10Dawson T Y G,Kurfess T R.Tool life,wear rates,and surface quality in hard turning[J].Trans NAMRI/SME,2001,258-65.

二级参考文献5

  • 1冯西桥,力学进展,1993年,23卷,214页
  • 2冯西桥,力学学报,1992年,24卷,500页
  • 3冯西桥,硕士学位论文,1991年
  • 4刘越,力学学报,1989年,增刊,131页
  • 5王仁,塑性力学进展,1988年

共引文献6

同被引文献24

  • 1陆明万,张远高,张丕辛.理想塑性结构极限与安定分析的数值方法[J].应用力学学报,1994,11(4):19-24. 被引量:4
  • 2张明焕,杨海元.结构安定分析方法研究[J].应用力学学报,1994,11(4):83-90. 被引量:22
  • 3徐思浩.用图解法求压力容器的安定载荷[J].南京化工大学学报,1996,18(4):57-63. 被引量:1
  • 4唐纪晔,钱令希.极限分析和安定分析的并行算法[J].计算力学学报,1997,14(2):143-149. 被引量:4
  • 5Druyanov Boris,Roman Itzhak.Shakedown theorems extended to elastic non perfectly plastic bodies[J].Mechanics Research Communications,1995,6:571-576.
  • 6Druyanov Boris,Roman Itzhak.An extension of the static shakedown theorem[J].Mechanics Research Communications,2001,5:499-504.
  • 7Druyanov Boris,Roman Itzhak.Extension of the static shakedown theorems to softening materials[J].Mechanics Research Communications,2004,31:383-384.
  • 8Borino Guido.Consistent shakedown theorems for materials with temperature dependent yield functions[J].International Journal of Solids and Structures,2000,37:3121-3147.
  • 9Corradi L,Maier G.Dynamic non-shakedown theorem for elastic perfectly-plastic continua[J].Journal of the Mechanics and Physics of Solids,1974,5:401-413.
  • 10Nguyen Quoc Son.On shakedown analysis in hardening plasticity[J].Journal of the mechanics and Physics of Solids,2003,51:101-125.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部