期刊文献+

考虑内部胞元能量等效的代表体元法 被引量:5

REPRESENTATIVE VOLUME ELEMENT SIMULATION BASED ON ENERGY EQUIVALENCE OF INNER CELLS
下载PDF
导出
摘要 具有周期性胞元的超轻质材料在制造和应用过程中,不可避免地会出现基体材料、微结构拓扑和尺寸的随机性变化.此时,评价材料的等效弹性性能需要借助基于均匀化方法(周期性边界条件)或代表体元法(周期性边界条件,均匀应力或均匀应变边界条件等)的蒙特卡洛模拟.该文首先通过算例分析和比较了不同边界条件下的数值结果,讨论了结果的尺度效应和对胞元选取的依赖性.为了提高和改善Dirichlet边界条件下的计算效率和结果,提出了一种考虑内部胞元能量等效的代表体元法.该方法能够有效削弱边界条件和胞元选取的影响,从而实现了采用较小的代表体元得到更好的结果.数值算例验证了方法在预测确定性材料和随机性材料等效模量时的有效性. When ultra-light materials with periodic micro-structures are manufactured and applied in engineering, there always exist stochastic variations in matrix materials, topology and size of microstructures, etc. One way to evaluate elastic properties of materials with imperfections is to use Monte Carlo simulation based on homogenization theory (with periodic boundary) or representative volume element method (with periodic boundary, uniform stress boundary or uniform strain boundary). In the first section of this paper, effective modules of ultra-light materials with imperfections are evaluated and compared under different types of boundary conditions. In this way, the influences of different boundary conditions on the predictions are discussed in detail, and the dependence of results on the size and topology of the RVE selected for computation is discussed as well. To improve the efficiency of computation and refine the results under Dirichlet boundary condition, a representative volume element computation based on energy equivalence of inner cells is proposed, by which better results can be achieved with relatively smaller RVE. The validation of this method is justified by means of numerical examples of effective property predictions for materials with and without imperfections.
出处 《固体力学学报》 EI CAS CSCD 北大核心 2007年第3期275-280,共6页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金重点项目(10332010) 创新群体计划(10421202) 国家973项目(2006CB601205) 丹麦DCAMM计划资助
关键词 超轻质材料 代表体元法 均匀化方法 尺度效应 随机缺陷 ultra-light materials, representative volume element method, homogenization, size effects, imperfections
  • 相关文献

参考文献12

  • 1Huet C.Application of variational concepts to size effects in elastic heterogeneous bodies[J].Journal of the Mechanics and Physics of Solids,1990,38(6):813-841.
  • 2Hassani B,Hinton E.A review of homogenization and topology optimization Ⅰ,Ⅱ,Ⅲ[J].Computers & Structures,1998,69:707-756.
  • 3阎军,程耿东,刘书田,刘岭.周期性点阵类桁架材料等效弹性性能预测及尺度效应[J].固体力学学报,2005,26(4):421-428. 被引量:25
  • 4Cluni F,Gusella V.Homogenization of non-periodic masonry structures[ J ].International Journal of Solids and Structures,2004.41:1911-1923.
  • 5Onck P R,Andrews E W,Gibson L J.Size effects in ductile cellular solids,Part Ⅰ:modeling[J].International Journal of Mechanical Sciences,2001,43:681-699.
  • 6Rupnowski P et al.An evaluation of the elastic properties and thermal expansion coefficients of medium and high modulus graphite fibers[J].Composites Part A:Applied Science and Manufacturing (Incorporating Composites and Composites Manufacturing),2005,36:327-338.
  • 7Jiang M,Ostoja-Starzewski M,Jasiuk I.Scaledependent bounds on effective elastoplastic response of random composites[J].Journal of the Mechanics and Physics of Solids,2001,49:655-673.
  • 8Van der Sluis O et al.Overall behaviour of heterogeneous elastoviscoplastic materials:effect of microstructural modelling[ J ].Mechanics of Materials,2000,32:449-462.
  • 9Kaminski M,Kleiber M.Perturbation based stochastic finite element method for homogenization of twophase elastic composites[J].Computers and Structures,2000,78:811-826.
  • 10Zhu H X,Hobdell J R,Windle A H.Effects of cell irregularity on the elastic properties of open-cell foams[J].Acta Materialia,2000,48:4893-4900.

二级参考文献9

  • 1杨庆生.智能复合材料的热力学特性[J].固体力学学报,1996,17(4):339-342. 被引量:8
  • 2Deshpande V S, Ashby M F, Fleck N A. Foam topology:bending versus stretching dominated architectures. Acta Mater,2001,49 : 1035 - 1040.
  • 3Deshpande VS, Fleck N A, Ashby M F. Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of Solids ,2001,49 : 1747 - 1769.
  • 4Wallach J C,Gibson L J. Mechanical behavior of a three-dimensional truss material. International Journal of Solids and Structures, 2001,38:7181 - 7196.
  • 5Wicks N, Hutchinson J W. Optimal truss plates.Int J Solids Struct, 2001,38:5165 - 5183.
  • 6Pecullan S, Gibiansky L V, Torquato S. Scale effects on the elastic behavior of periodic and hierarchical two dimensional composites. Journal of the Mechanics and Physics of Solids,1999,47 : 1509 - 1542.
  • 7Kohn R. Recent Progresses in the Mathematical modeling of Composite Materials. Courrant Institute, New York, 1988:155 - 176.
  • 8Gudes J M, Kikuchi N. Preprocessing and Post processing for Materials Based on the Homogenization Method with Adaptive Finite Element Methods. Computer Methods in Applied Mechanics and Engineering, 1990,83 : 143 - 198.
  • 9CookRD著 何穷 程耿东译.[M].北京:科学出版社,1989..

共引文献24

同被引文献52

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部