期刊文献+

聚酰亚胺纳米纤维碳化及其储电性能研究 被引量:2

Carbon Nanofibers Made from Carbonization of Polyimide Nanofibers and Their Characteristic of Charge Storage
下载PDF
导出
摘要 以联苯四甲酸二酐和对苯二胺为单体,在低温下反应形成聚酰胺酸溶液,电纺该溶液形成聚酰胺酸纳米纤维布,并热亚胺化和碳化形成碳纳米纤维布,用热天平、扫描电镜等手段对纳米纤维的尺寸、形貌、导电性以及碳化过程进行了观察和表征.通过模拟电容器实验,对碳纳米纤维布作为超级电容器电极材料使用时的储电性能进行了检验,测得这种碳纳米纤维布在0.5 mol/L高氯酸锂-乙腈电介质中的最高比电容量为118.5 F/g. Polyimide (PI) precursors, poly( p- phenylene biphenyhetracarboxamide acid) (PAA), were synthesized from 3,4,3' ,4'-biphenyhetracarboxylic dianhydride (BPDA) and p- phenylenediamine (PDA) in solvent DMAc. The as-synthesized PAA was electrospun into nanofibers with diameters ranging from 100 nm to 300 nm. The non-woven fabric mats composed of the as-electrospun nanofibers were imidized and carbonized at high temperature in nitrogen atmosphere. SEM, TGA were used to characterize the size, morphology of the electrospun PAA nanofibers and carbonized nanofibers as well as the carbonization process of PAA nanofibers.. The electrodes made from the carbon nanofiber mat were charaterized by cyclic voltammetry and constant current charge-discharge tester in Lithium perchlorate (LiC104)-Acetonitrile (AN) solution. The supercapacitor using carbon nanofiber mats as electrodes is reversible, and the maximum specific capacitance was 118.5 F/g.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2007年第4期331-335,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家科技部"973"计划资助项目(2004CCA04700)
关键词 聚酰亚胺纳米纤维布 碳化 超级电容器 循环伏安 恒电流充放电 比电容量 polyimide non-woven fabric mats carbonization supercapacitor cyclic vohammetry constant current charge/discharge
  • 相关文献

参考文献20

  • 1Yoshida A,Nonaka S,Aoki I,et al.Electric double-layer capacitors with sheet-type polarizable electrodes and application of the capacitors[J].J Power Sources,1996,60(2):213-218.
  • 2Kibi Y,Saito T,Kurata M,et al.Fabrication of high-power electric double-la yer capacitors[J].J Power Sources,1996,60(2):219-224.
  • 3Zheng J P,Huang J,Jow T R.The limitations of energy density for electrochemical capacitors[J].J Electrochem Soc,1997,144(6):2 026-2 031.
  • 4Faggioli E,Rena P,Danel V,et al.Supercapacitors for the energy management of electric vehicles[J].J Power Sources,1999,84(2):261-269.
  • 5Conway B E.Electrochemical supercapacitors:science fundamentals and technological applications[M].New York:Kluwer Academic/Plenum Publishers,1999.13.
  • 6K(o)tz R,Carlen M.Principles and applications of electrochemical capacitors[J].Electrochim Acta,2000,45 (15-16):2 483-2 498.
  • 7Liu P,Verbrugge M,Soukiazian S.Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors[J].J Power Sources,2006,156(2):712-718.
  • 8Mastragostino M,Arbizzani C,Paraventi R,et al.Polymer selection and cell design for electric-vehicle supercapacitors[J].J Electrochem Soc,2000,147(2):407-412.
  • 9Zheng J P,Jow T R.High energy and high power density electrochemical capacitors[J].J Power Sources,1996,62(2):155-159.
  • 10An K H,Kim W S,Park Y S,et al.Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes[J].Adv Funct Mater,2001,11 (5):387-392.

二级参考文献11

  • 1Mastragostino, M.; Arbizzani, C.; Paraventi, R.; Zawell, A.J. Electrochem. Soc., 2000, 147(2): 407
  • 2Yada, S.; Lshihara, K. J. Power Sources, 1997, 68:3
  • 3Iijima, S. Nature, 1991, 354:56
  • 4Niu, C.; Sichel, E. K.; Hoch, R.; Moy, D.; Tennent, H.Appl. Phys. Lett., 1997, 70:1480
  • 5Ma, R. Z.; Liang, J.; Wei, B.Q.; Zhang, B.; Xu, C.L.;Wu, D.H. J. Power Sources, 1999, 84:126
  • 6Frackowiak, E.; Gautier, S.; Gaucher, H.; Bonnamy, S.;Beguin, F. Carbon, 1999, 37:61
  • 7Ma, R.Z.; Wei, B.Q.; Xu, C.L.; Liang, J.; Wu, D.H.Science in China (Series E), 2000, 43(2): 178
  • 8Liang, Q.; Gao, L.Z.; Li, Q.; Tang, S.H.; Liu, B.C.;Yu, Z.L. Carbon, 2001, 39:897
  • 9Sing, K. S. W.; Everett, D.H.; Haul, R. A. W.; Moscou,L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure&Appl. Chem., 1985, 57(4): 603
  • 10Diaz-Teran, J.; Nevskaia, D. M.; Fierro, J. L G.; Lopez-Peinado,A. J.; Jerez, A. Microporous And Mesoporous Materials,2003, 60:173

共引文献15

同被引文献41

  • 1王兆礼,张明艳,张玉军.静电纺丝法制备聚酰亚胺纳米纤维[J].绝缘材料,2006,39(6):7-8. 被引量:6
  • 2Kevin C. O'brien, W.J. Koros. Polyimide materials based on pyromellitic dianhydride for the separation of carbon dioxide and methane gas mixtures [J]. Journal of Membrane Science, 1988, 35: 210-230.
  • 3Frenot.A, Chronakis.I. Polymer nanofibers assembled by electrospinning[J]. Current Opinion in Colloid and Interface Science, 2003, 8: 64-75.
  • 4Mikawa M, Nagaoka S, Kawakami H. Gas perme- ation stability of asymmetric polyimide membrane with thin skin layer: effect of molecular weight of polyi- mide[J]. Journal of Membrane Science, 2002, 208 405-414.
  • 5Yuuki Karube, Hiroyoshi Kawakami. Fabrication of well-aligned electrospun nanofibrous membrane basedon fluorinated polyimide[J]. Polymers Advanced Technology, 2010, 21: 861-866.
  • 6Zhu Jiahua. Electrospun Polyimide Nanocomposite Fibers Reinforced with Core-Shell Fe-FeO Nanopartic- les[J]. The Journal of Physical Chemistry, 2010, 114: 8 844-8 850.
  • 7Han Enlin, Wu Dezhen, Qi Shengli. Incorporation of Silver Nanoparticles into the Bulk of the Electrospun Ultra fine Polyimide Nano fibers via a Direct Ion Exchange Self-Metallization Process[J]. Appled Materials Interface, 2012, 4:2 583-2 590.
  • 8Nguyen Thi Xuyen, Eun Ju Ra, Hong-Zhang Geng. Enhancement of Conductivity by Diameter Control of Polyimide-Based Electrospun Carbon Nanofibers[J]. The Journal of Physical Chemistry B, 2007, 111(39): 11 350-11 353.
  • 9Cheng Si, Shen Dezhi, Zhu Xinsheng. et al. Preparation of nonwoven polyimide/silica hybrid nanofiberous fabrics by combining electrospinning and controlled in situ sol-gel techniques[J]. European Polymer Journal. 2009, 45: 2 767-2 778.
  • 10Chen Dan, Wang Ruiyu. High performance polyimide composite films prepared by homogeneity reinforcement of electrospun nanofibers[J]. Composites Science and Technology, 2011, 71:1 556-1 562.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部