期刊文献+

纳米技术在肿瘤诊断与治疗中的应用趋势 被引量:7

Current application of nanotechnology in cancer prevention and treatment
下载PDF
导出
摘要 长度仅为1~100nm的纳米装置能够自由进出人体细胞,与以往的诊断和治疗手段相比具有体积小,生物相容性好和器官靶向能力强等优势,为生物医学研究提供了新的多功能平台。纳米技术在肿瘤的诊断与治疗方面具有广泛的应用前景,尤其在核磁共振成像技术和靶向治疗中尤为突出。纳米级核磁共振成像技术显著提高了肿瘤诊断的精密度与准确度;纳米载体则能够大大提高靶向释药的剂量和精确度以及降低毒副反应,从而在人体无创的状态下更有效地治疗肿瘤。结合目前美国肿瘤医学领域对纳米技术的研究和实际应用中较为前沿的纳米手段,对纳米技术在包括中国在内的发展中国家乃至世界范围内的肿瘤医学中的应用进行了展望。 Nanotechnological devices with length scales in the 1- to 100-nanometers range can penetrate human cells without difficulty. Compared with the traditional diagnostic and therapeutic methods nan- othenology had smaller size, better solubility and targeting ability, and therefore provides a new multifunctional platform for biomedical research. Nanotechnology opens many new research avenues for the detection and cure of cancer, especially for the magnetic resonance imagine (MRI) and targeting of cancer cells. Nanoscale MRI significantly enhances the resolution and accuracy of in vivo imaging, while nanoparticles can greatly improve the targeted delivery of anti-cancer drugs, and therefore better invasive therapy of tumor. This article presents an overview of the current application of nanotechnology in cancer research in the United States of America and discusses the frontier nanotech strategies that have already demonstrated in vitro and in vivo efficacy. Finally it provides insights into the potential applications of cancer nanotechnology worldwide, especially in the developing countries including China.
出处 《中华肿瘤防治杂志》 CAS 2007年第22期1740-1743,共4页 Chinese Journal of Cancer Prevention and Treatment
关键词 纳米技术 肿瘤/诊断 成像 治疗/靶向 nanotechnology, neoplasms/diagnosis imaging, therapy/targeting
  • 相关文献

参考文献27

  • 1Ferrari M. Cancer nanotechnology: opportunities and challenges [J]. Nat Rev Cancer, 2005, 5(3): 161-171.
  • 2McNeil S E. Nanotechnology for the biologist[J]. J Leuk Biol, 2005, 78:585-594.
  • 3Bogdanov A A Jr, Chen J W, Kang H W, et al. Magnetic resonance signal amplification probes[J]. Ernst Schering Res Found Workshop, 2005,(49): 147-157.
  • 4Vinogradow S V, Batrakova E V, Kabanov A V. Nanogels for oligonucleotlde delivery to the brain[J]. Bioconjug Chem, 2004,15: 50-60.
  • 5Moghimi S M, Hunter A C, Murray J C, et al. Long-circulating and target-specific nanoparticles: theory to practice[J]. Pharmacol Rev, 2001, 53(2): 283-318.
  • 6Gupta A K, Curtis A S. Surface-modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture[J]. J Mater Sci Mater Med, 2004, 15(4) : 493-496.
  • 7Harris J M, Chess R B. Effects of pegylation on pharmaceuticals[J]. Nat Rev Drug Discov, 2003, 2(3).. 214-221.
  • 8Brigger I, Dubernet C, Couvreur P, et al. Nanoparticles in cancer therapy and diagnosis[J]. Adv Drug Deliv Rev, 2002, 54(5) : 631-651.
  • 9Moghimi S M, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties[J]. Prog Lipid Res, 2003,42(6) : 463-478.
  • 10Malik N, Wiwattanapatapee R, Klopsch R, et al. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of ^125I-labeled polyamidoamine dendrimers in vivo[J]. J Control Release, 2000, 65 (1-2): 133-148.

同被引文献82

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部