期刊文献+

基于高分辨率RS影像的城市大比例尺GEO-DB 被引量:1

Large-scale Urban GEO-database Based on High Resolution Remote Sensing Image
下载PDF
导出
摘要 传统控制测量方法在成图周期、数据存储和后续利用等方面难以满足城市大比例尺制图的要求。该文将高空间分辨率卫星遥感影像借助数据库技术用于城市大比例尺制图来提高制图效率。探讨了研究制图比例尺与遥感影像分辨率的关系,遥感影像处理方法,基于定制规则、自动化符号方案和自动拓扑的遥感图像自动采集方法,空间数据库构建技术,不同格式数据的统一存储、管理和利用,利用版本技术构建和管理时空地理数据库。 Traditional surveying process lags behind, because it has many shortcomings in mapping cost, mapping period, data storage and further usage. It is an effective way to use high spatial resolution remote sensing image to make large-scale urban maps. This paper discusses the relationship between mapping scale and image spatial resolution, and explains the data-abstracted method based on customized rules, intelligent symbols and automated topology. Then it expatiates on the core technology of get-database based on large-scale digital maps and high spatial resolutiou image, and argues how to establish and maintain a spatial database and serve other different applications by the public interface. Different format data are stored into the same spatial database which further provides comprehensive data and the thematic maps for urban administration, urban plan, digital city and GIS, The spatio-temporal get-database is established by the "versioning" which can manage different spatial and temporal data.
出处 《计算机工程》 CAS CSCD 北大核心 2007年第18期103-105,共3页 Computer Engineering
关键词 高分辨率遥感影像 城市大比例尺制图 地理数据库 GIS 版本技术 high resolution remote sensing image large-scale urban mapping geo-database(GEO-DB) GIS versioning
  • 相关文献

参考文献6

二级参考文献24

  • 1郑汉球,洪立波,陶福海.工程测量技术的发展和我们的对策[J].北京测绘,1996,10(1):6-13. 被引量:33
  • 2邓晓红.目标变化影像专题图的制作技术[M].郑州:解放军信息工程大学测绘学院,2000..
  • 3王培杰 张英中 等.面向对象Windows编程技术[M].大连:大连理工大学出版社,1994..
  • 4李德仁.GPS用于摄影测量与遥感[M].测绘出版社,1996..
  • 5陈泽民 见:胡如忠 吴舒敏编.对IKONOS卫星遥感影像精度的测试[A].见:胡如忠,吴舒敏编.IKONOS卫星应用论文集[C].北京:北京依米空间成像技术有限公司,2000.25—37.
  • 6杨清华 见:胡如忠 吴舒敏编.高分辨率卫星遥感数据在土地利用调查中的应用前景[A].见:胡如忠,吴舒敏编.IKONOS卫星应用论文集[C].北京:北京依米空间成像技术有限公司,2000.38—42.
  • 7[1]Wilkinson G G. Recent Development in Demote Sensing Technology and the Importance of Computer Vision Analysis Techniques [A]. Machine Vision and Advanced Image Processing in Remote Sensing, [C]. Springer, 1999.
  • 8[2]Gracia I, Petrou M. Non-Linear Line Detection Filters [A]. Machine Vision and Advanced Image Processsing in Remote Sensing [C]. Springer, 1999.
  • 9[3]Moigne J Le, Tilton J C. Refining Image Segmentation by Integration of Edge and Region Data [J]. IEEE Transations on Geosciences and Remote Sensing, 1995, 33(3):605-615.
  • 10[4]Radeva P, Sole A, Lopez A M, et al. Detecting Nets of Linear Structures in Satellite Images [A]. Machine Vision and Advanced Image Processing in Remote Sensing [C]. Springer, 1999.

共引文献97

同被引文献6

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部