摘要
随着2维条形码在人们的日常生活和工业生产中越来越多的应用,对2维条形码的检测定位是十分有意义的。目前的检测算法只适用于纸制印刷品表面,不能用于检测印刻在其他材料表面的2维条形码。提出了使用机器学习的方法来检测各种材料表面的基本模式各不相同的2维条形码,在AdaBoost的基础上提出了自适应SpatialBoost算法,将图像的纹理信息和空间信息自适应的结合起来。实验结果表明,该算法所训练出的2维条形码检测器在测试样本上达到了100%的检测率。
With the application of Data Matrix in people' s daily life and industrial product, the detection of Data Matrix has become very useful. The existing detection algorithm is only suitable for printed paper; it can not be used to detect Data Matrix which is punched on other material surfaces. This paper presents a machine learning based on the method which can detect the Data Matrix on various surfaces. We extend the AdaBoost algorithm to Adaptive-SpatialBoost which can adaptively combine the texture information and spatial connection. The Data Matrix detector trained by this algorithm has achieved 100% detection rate on the test samples in our experiment.
出处
《中国图象图形学报》
CSCD
北大核心
2007年第10期1873-1876,共4页
Journal of Image and Graphics