期刊文献+

宽基线主动视觉中感兴趣目标的对应技术 被引量:3

Correspondence of Object-of-Interest in Wide Baseline Active Vision
下载PDF
导出
摘要 在主动视觉系统中,通常需要多个代理对同一场景中的感兴趣目标进行协同处理,以提高系统智能分析感兴趣目标的能力。其中,基于多视几何关系解决感兴趣目标的对应问题是协同处理的基础。一方面,主动视觉系统一般工作在宽基线条件下,这增加了对应问题描述的复杂性;另一方面,主动视觉系统以最佳视角观察目标,因此摄像头需做实时的姿态调整,由此导致的视间几何关系变化进一步加深了对应问题的解决难度。本文基于仿射不变的几何特征,建立宽基线条件下的多视几何关系,并针对频繁使用几何特征不能满足主动视觉系统实时要求的问题,提出一种快速更新多视几何关系的方法,并在多视几何约束下实现对应感兴趣目标的鲁棒标识。实验结果表明,该方法能解决宽基线主动视觉系统中感兴趣目标的复杂对应问题,并能达到实时要求。 In active vision system, intelligent analysis of objects-of-interest(OOI) in 3D scene generally needs multi-agent cooperation, which depends heavily on the accuracy of multi-view geometry computation and the robust correspondence of OOI. In most cases, active vision system captures multiple views under wide-baseline stereo model, which results in distinct affine distortions between views and complex description of correspondence problem. Furthermore, the difficulty of depicting correspondence problem in active vision is aggravated when the cameras perform real-time pose adjustment for active OOI tracking with the best viewpoint. For abovementioned issues, this paper proposes a method to achieve real-time multi-view geometry updating on the basis of constructing geometric feature invariants. Then a robust OOI correspondence algorithm is advanced with the acquired multi-view geometry constraint. The experimental results demonstrate that our method can obtain robust OOI correspondence under wide baseline stereo model and be suitable for real-time application in active vision system.
出处 《中国图象图形学报》 CSCD 北大核心 2007年第10期1917-1921,共5页 Journal of Image and Graphics
基金 上海博后基金项目(06R214138)
关键词 主动视觉 宽基线 感兴趣目标 对应问题 多视几何关系 active vision, wide baseline, correspondence of object-of-interest, multi-view geometry
  • 相关文献

参考文献7

  • 1Bakhtari A, Benhabib B. Agent-based active-vision system reconfiguration for autonomous surveillance of dynamic, multi-object environments [ A ]. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems [ C ]. Edmonton, Alberta, Canada, 2005 : 1373 - 1378.
  • 2Fayman J A, Rivlin E, Christensen H I. A system for active vision driven robotics [ A ]. In: Proceedings of IEEE International Conference on Robotics and Automation [ C ]. Minneapolis, MN, USA, 1996:1986 - 1992
  • 3Sun J, Shum H Y, Zheng N N. Stereo matching using belief propagation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(7) : 787 - 800.
  • 4Kanade T, Okutomi M. A stereo matching algorithm with an adaptive window: theory and experiment [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Sept., 1994, 16 (9): 920 - 932.
  • 5Lowe D. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2) : 91 - 110.
  • 6Zhang Z. Determining the epipolar geometry and its uncertainty: a review[J]. International Journal of Computer Vision, 1998, 27(2) : 161 - 195.
  • 7Zhang Z. A flexible new technique for camera calibration [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11) : 1330 -1334.

同被引文献25

  • 1阎青,张桂林,张鹏.基于DSP的实时图像目标搜索与跟踪系统设计[J].微计算机信息,2005,21(08Z):90-92. 被引量:9
  • 2王君秋,查红彬.结合兴趣点和边缘的建筑物和物体识别方法[J].计算机辅助设计与图形学学报,2006,18(8):1257-1263. 被引量:7
  • 3曾国斌,曾国昌.基于IP技术的智能监控系统构架的一种实现方法[J].计算机与现代化,2007(2):70-72. 被引量:2
  • 4金婷婷,施朝健.应用主动轮廓模型在单摄像机监控系统中的运动目标检测与跟踪(英文)[J].上海海事大学学报,2007,28(1):32-35. 被引量:3
  • 5Lowe D. Distinctive image features from scale-invariant keypoints [J ]. International Journal of Computer Vision, 2004, 60 ( 2 ) : 91-110.
  • 6Belongiei S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(24 ) :509-522.
  • 7Berg A, Berg T, Malik J. Shape matching and object recognition using low distortion correspondences [ A ]. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition [ C ] , San Diego, USA, 2005:26-33.
  • 8Mikolajczyk K, Schmid C. Indexing based on scale invariant interest points [ A ]. In: Proceedings of IEEE Conference on Computer Vision [C]. Vancouver, Canada, 2001:525-531.
  • 9Bosch Anna, Zisserman Andrew, Munoz Xavier. Scene classification using a hybrid generative/discriminative approach [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(4) : 712-727.
  • 10Odone F, Barla A, Verri A. Building kernels from binary strings for image matching [ J]. IEEE Transaetions on Image Proeessing, 2005, 14(2) :169-180.

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部