期刊文献+

THE DISSIPATIVE QUASI-GEOSTROPHIC EQUATION IN SPACES ADMITTING SINGULAR SOLUTIONS 被引量:4

THE DISSIPATIVE QUASI-GEOSTROPHIC EQUATION IN SPACES ADMITTING SINGULAR SOLUTIONS
原文传递
导出
摘要 This paper studies the Cauchy problem of the dissipative quasi-geostrophic equation in pseudomeasure space PM^n+1-2α(R^n) or Lorentz space L n/2α-1,∞(R^n), which admit the singular solutions. The global well-posedness is established provided initial data θ0(x) are small enough in these spaces. Moreover, the asymptotic stability of solutions in pseudomeasure space is proved. In particular, if the initial data are homo-geneous functions of degree 1 - 2α, the self-similar solutions are also obtained.
出处 《Journal of Partial Differential Equations》 2007年第3期203-219,共17页 偏微分方程(英文版)
基金 B. Yuan was partially supported by the China postdoctoral Science Foundation (No. 20060390530), Natural Science Foundation of Henan Province (No. 0611055500), Science Foundation of the Education Department of Henan Province (200510460008) and Doctor Foundation of Henan Polytechnic University.
  • 相关文献

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部