期刊文献+

基于局部异常行为检测的欺骗识别研究 被引量:3

Methodologies for deception detection based on abnormal behavior
下载PDF
导出
摘要 基于局部异常行为检测的欺骗识别研究是计算机视觉与情感计算领域中的一个新兴课题,其核心是利用计算机视觉技术从视频中检测、跟踪人的局部动作并进行分析,得出检测对象欺骗的可能性.它在安全监控、辅助面试、情感合成等领域均有着广阔的应用前景.从视觉技术的发展水平和常用处理方法入手,对欺骗识别研究的几个典型问题的研究现状进行了综述,并归纳了欺骗识别研究所涉及的相关理论与技术方案,最后结合课题研究给出了该研究的难点、急需解决的若干重要问题及未来的发展趋势. Research on deception detection based on visual cues for abnormal behavior is a new project in the area of computer vision and affective computing research. This research aims at detecting and tracking an individual's behavior via computer vision technology and analyzing the probability of it being deceptive. This has many promising applications in areas such as security surveillance, automated interview assistants, emotion synthesis, etc. This paper primarily focuses on overall methods and general characteristics of computer vision related to the detection process. A discussion on research challenges and future directions is also provided at the end of the paper.
作者 夏凡 王宏
出处 《智能系统学报》 2007年第5期12-19,共8页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(60433030)
关键词 情感计算 欺骗识别 计算机视觉 智能系统 affective computing deception detection computer vision intelligent systems
  • 相关文献

参考文献3

二级参考文献118

  • 1[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 2[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 3[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 4[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 5[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 6[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 7[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785
  • 8[32]Arseneau S, Cooperstock J. Real-time image segmentation for action recognition. In: Proc IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 1999. 86-89
  • 9[33]Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences. In: Proc the Fourth Asian Conference on Computer Vision, Taiwan, 2000.961-964
  • 10[34]Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video. In: Proc IEEE Workshop on Applications of Computer Vision, Princeton, NJ, 1998. 8-14

共引文献328

同被引文献24

  • 1钱志明,杨家宽,段连鑫.基于视频的车辆检测与跟踪研究进展[J].中南大学学报(自然科学版),2013,44(S2):222-227. 被引量:13
  • 2黎自强,滕弘飞.广义Hough变换:多个圆的快速随机检测[J].计算机辅助设计与图形学学报,2006,18(1):27-33. 被引量:40
  • 3匡平,朱清新,陈旭东.一种基于最小特征根分析的直线检测算法[J].电子测量与仪器学报,2007,21(3):33-38. 被引量:4
  • 4TERJE J, EDVARDSEN S T, MEYER G, et al. The VRdose software system: user manual, report and design documentation (RS)[R]. [S. l. ] : 核燃料ザィクル開発機構公開資料,2004.
  • 5IGUCHI Y, KANEHIRA Y, TACHIBANA M, et al. Development of decommissioning engineering support system (DEXUS) of the fugen nuclear power station[ J]. Journal of Nuclear Science and Technology, 2004,41 ( 3 ) :367.
  • 6IGUCHI Y, KANEHIRA Y, TACHIBANA M, JOHNSEN T. Development of decommissioning engineering support system (DEXUS) of the fugen nuclear power station [ J]. Journal of Nuclear Science and Technology,, 2004,41 ( 3 ) : 367 -375.
  • 7IZUMI M, KANEHIR Y A, IGUCHI Y. Development of decommissioning engneering support system for the fugen NPS[ C ]// 13th International Conference on Nuclear Engineering, Beijing, 2005.
  • 8李力,王飞跃,郑南宁,张毅.驾驶行为智能分析的研究与发展[J].自动化学报,2007,33(10):1014-1022. 被引量:34
  • 9Hogan N, Sternad D. Sensitivity of smoothness measures to movement duration, amplitude, and arrests. Journal of motor behavior, 2009, 41(6) : 529-534.
  • 10Rohrer B, Fasoli S, Krebs H I, et al. Movement smo- othness changes during stroke recovery. The Journal of Neuroscience, 2002, 22( 18): 8297-8304.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部