期刊文献+

基于符号特征和混沌参数的车辆悬架隔振性能综合评价 被引量:1

The comprehensive evaluation for anti-vibration performance of vehicle suspension based on symbolic characteristic and chaos parameter
下载PDF
导出
摘要 为了更好地分辨车辆悬架隔振性能,采用符号特征和混沌参数建立了车辆悬架隔振性能评价的新方法.分析了车辆悬架隔振性能评价方法的现状和问题,简述了对时间序列进行符号分析和混沌分析的特征和参数,通过实验获得了具有B J212钢板弹簧式非独立悬架结构的某试验车前悬架当钢板弹簧数量改变时的悬架振动时间序列,对悬架振动时间序列计算获得了悬架系统参数(如一阶固有频率f0和阻尼比ξ)、符号参数(如Shannon熵)及混沌参数(如最小嵌入相空间维数Mm in和关联维D2).结果表明,随着前悬架钢板弹簧数量减少,悬架吸收振动冲击的能力下降,悬架减振能力下降;其一阶固有频率f0下降了14%、阻尼比ξ下降了10%,悬架吸收振动冲击力的最大值下降了13%;"1-Shannon熵"与关联维D2均呈现大-小-大的变化趋势,在4片钢板弹簧时两者均有最小值.基于符号特征"1-Shannon熵"和混沌参数关联维D2共同建立了复合参量F.较之两个初始特征参数,F的变化趋势更为显著,可用于综合评价车辆前悬架钢板弹簧数量改变时的隔振性能. In order to identify the anti-vibration performance of vehicle suspension ( AVPVS), a new technique to evaluate the AVPVS is established by the symbolic characteristics and chaos parameters. The progress and problems about the evaluating technique for AVPVS are analyzed; The characteristics and parameters from the analysis of symbol and chaos to a time sequence is briefly depicted;The suspension vibration time sequence from a front suspension of the test automobile, which is with the model BJ212 and with the leaf spring rigid axle suspension, is obtained while changing the amount of leaf spring. The system parameters of suspension such as the first inherent frequency f0 and the damp rate ξ, the chaos parameters such as the minimum embedding symbolic parameters such as Shannon entropy, the dimension Mmin and the correlation dimension D2, are obrained by calculating the suspension vibration time sequence. The results show that with the decrease of leaf spring of front suspension, the suspension capacity to absorb vibration wallop is reduced; the first inherent frequencyfo is decreased by 14% meanwhile the damp rate ξ is decreased by 10%, the maximum value to absorb vibration wallop by suspension is decreased by 13% ; the "1-Shannon entropy" and Correlation Dimension D2 are both with the variety trend of "large-little-large", both of which are with the minimum value in the 4 piece of leaf spring. The compound parameter F is established based on the symbolic characteristic "1-Shannon entropy" and chaos parameter Correlation Dimension D2. Comparing with the two original characteristic or parameter, the variety trend of F is more remarkable, therefore it can be used to evaluate synthetically for the anti-vibration performance of vehicle front suspension while the amount of leaf spring changes .
出处 《长沙交通学院学报》 2007年第3期60-64,共5页 Journal of Changsha Communications University
基金 江苏省高校自然科学基础研究资助项目(07KJD580084 04KJB580037) 南京工程学院科研基金项目(科04-12 科07-57)
关键词 车辆工程 隔振性能 综合评价 车辆悬架 符号熵 关联维 vehicle engineering anti-vibration performance integrating evaluation vehicle suspension
  • 相关文献

参考文献5

  • 1张雨,任国峰,王爱国.基于符号序列Shannon熵提取机器的运行特征[J].中国机械工程,2006,17(15):1595-1599. 被引量:15
  • 2张雨.符号化时间序列分析[J].湘潭矿业学院学报,2004,19(1):75-79. 被引量:11
  • 3张雨 温熙森.系统浑沌特征参数的计算机求解 [J].中国有色金属工业学报,1999,(1):19-23.
  • 4中华人民共和国交通部.JT/T488-2001,汽车悬架装置检测台技术条件[S].北京:人民交通出版社,2001.
  • 5Schramn D. An optimized approach to suspension control[J]. SAE 900661,1990:1 010 - 1 020.

二级参考文献30

  • 1张雨,刘少伦.汽油机瞬态排放检测的新实践[J].小型内燃机与摩托车,2004,33(6):28-30. 被引量:13
  • 2张雨,李碧琼,任国锋,王爱国.汽油机怠速HC排放信息的符号序列直方图分析[J].长沙交通学院学报,2004,20(4):12-15. 被引量:12
  • 3李平,汪秉宏.DNA序列分析法在金融数据时间序列中的应用[J].中国科学院研究生院学报,2003,20(2):200-204. 被引量:5
  • 4Lehrman M,Rechester A B,White R B.Symbolic Analysis of Chaotic Signals and Turbulent Fluctuations[J].Physical Review Letters,1997,78(1):54-57.
  • 5Tang X Z,Tracy E R.Data Compression and Information Retrieval via Symbolization[J].Chaos,1998,8(3):688-696.
  • 6Zhang Yu,Zhang Zhipei,Zhou Yichen.The Application of the Block Vibration Characters of the IC Engines to the Compressing Rings Fault Diagnosing[C]//Proceeding of 5th International Congress on Vibration and Sound.Adelaide,Australia:Adelaide University,1997:1011-1015.
  • 7DEVAMEY R L. Chaotic Dynamical Systems[M]. New York: Addison-Wesley, 1989.
  • 8JACLSON E A. Perspectives of Nonlinear Dynamics[M]. Cambridge England : Cambridge University Press,1989.
  • 9CRUTCHFIELD J P, PACKARD N H. Symbolic dynamics of noisy chaos[J]. Physica D, 1983,7:201-223.
  • 10RECHESTER A, WHITE R B. Symbolic kinetic equation for a chaotic attractor[J]. Physics Review Letters A, 1991,156 : 419-424.

共引文献21

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部