期刊文献+

TTI介质弹性波频率-空间域有限差分数值模拟 被引量:18

Frequency-Space Domain Finite Difference Numerical Simulation of Elastic Wave in TTI Media
下载PDF
导出
摘要 由周期性薄互层引起的VTI介质是研究比较广泛的一类各向异性介质。当VTI介质对称轴偏离垂向,本构坐标系与观测坐标系不重合时,会形成观测坐标系下的TTI介质。引入25点优化差分算子,推导出二维TTI介质频率域弹性波动方程;为压制边界反射,采用完全匹配层法吸收边界条件,并计算出优化差分系数;最后采用集中力源,模拟了弹性波在TTI介质中的传播过程。从波场快照和地面共炮记录可以看出,笔者采用的数值模拟算法能有效压制数值频散。TTI介质中的波场传播比较复杂,纵波传播相对稳定,横波波前的三分叉现象比较明显,并存在振幅奇异性。当VTI介质的对称轴偏转后,还会增加地面地震记录的复杂性。 The VTI media is caused by fine periodic thin layers, and it is one of most sedimentary rocks researched by geophysicists. In dipping thin layers, the symmetry axis of VTI media should be tilted by dip angle in observing reference system, and in this case, VTI media is named transversely isotropic media with tilted symmetry axis (TTI media). In the paper, in order to overcome the numerical dispersion, we have adopted a 25--points finite difference numerical simulation scheme and derived fre- quency-space domain elastic wave equations of TTI media. We make use of elastic wave equation in perfect matched layer to attenuate reflection of elastic wave at artificial boundary, and get optimized coefficients on the basis of optimization theory. Finally, we successfully implement numerical simulation of seismic elastic wave field in TTI media with concentrating force source. The results of seismic wave simulation illustrate that elastic wave fields of anisotropic media are very complex, transverse waves often have phenomena of singularity, and the difficulties of surface seismic record processing increase owing to TTI media.
出处 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2007年第5期1023-1033,共11页 Journal of Jilin University:Earth Science Edition
基金 国家"973"项目(2007CB209605)
关键词 各向异性介质 弹性波方程 频率-空间域 有限差分 数值模拟 anisotropic media elastic wave equation frequency--space domain finite difference,numerical simulation
  • 相关文献

参考文献12

  • 1张永刚.地震波场数值模拟方法[J].石油物探,2003,42(2):143-148. 被引量:109
  • 2Joet C H, Shin C. An optimal 9 -- point, finitediffer- ence, frequency-- space, 2 -- D scalar wave extrapolator [J]. Geophysics, 1996, 61(2) :529-537.
  • 3Min Dong--Joo, Shinz Changsoo. Improved frequency --domain elastic wave modeling using weighted--averaging difference operalors [J]. Geophysics, 2000, 65 (3) :884 - 895.
  • 4Cerjan C, Kosloff D, Kosloff R. A nonreflecting boundary condition for discrete acoustic and elastic wave equations[J]. Geophysics, 1985, 50(4) :705-708.
  • 5Marfurl K J. Accuracy of finite--difference and finite --element modeling of the scalar and elastic wave equations[J]. Geophysics, 1984,19(5) :533-549.
  • 6Berenger J. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computa- tional Physics, 1994, 11(4) :185 - 200.
  • 7Chew W C, Liu Q H. Perfectly matched layers for elastodynamics: A new absorbing boundary condition[J]. J Comp Acoust, 1996(4):72-79.
  • 8Rappapport C M. Perfectly matched absorbing boundary conditions based on anisotropic lossy mapping of space[J]. IEEE Microwave Guided Wave Lett., 1995 (5): 90-92.
  • 9Winterstein D F. Velocity anisotropy terminology for geophysicists[J]. Geophysics, 1990, 55 (8): 1070 - 1088.
  • 10Alterman Z, Karal F C. Propagation of elastic wave in layered media by finite-difference methods[J]. Bull Seism Soc AM, 1968, 58:367-398

二级参考文献23

  • 1周家纪,贺振华.模拟地震波传播的大网格快速差分算法[J].地球物理学报,1994,37(A02):450-454. 被引量:7
  • 2杨顶辉,滕吉文.各向异性介质中三分量地震记录的FCT有限差分模拟[J].石油地球物理勘探,1997,32(2):181-190. 被引量:37
  • 3王才经.波动方程模拟和偏移的频散分析[J].计算地球物理研究文集,1990,33:521-528.
  • 4Boris J P,Book D L. Flux-corrected transport Ⅰ, SHAS-TA, A fluid transport algorithm that works[J]. J comput Phys, 1973, 11:38~69
  • 5Book D L, Boris J P, Hain K. Flux-corrected transport Ⅱ, generalization of the method [J]. J comput Phys,1975,18: 248~283
  • 6Altermen Z S, Loewenthal D. Seismic wave in a quarter and three quarter plane[J]. Geophysics J Roy Astr Soc,1970,20(1): 101~126
  • 7Alford R M, Kelly K R,Boore D M. Accuracy of finite difference modeling of the acoustic wave equation[J].Geophysics, 1974,39(6): 834~842
  • 8Virieux J. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method ( shear waves) [J]. Geophysics, 1986,51(4): 889~901
  • 9Levander A R. Fourth-order finite-difference P-SV seismograms[J]. Geophysics, 1988,53 ( 11 ): 1 425~1436
  • 10Crase E. High-order(space and time)finite-difference modeling of elastic wave equation[J]. Expanded Abstacts of 60th SEG Annual Meeting, 1990. 987~991

共引文献198

同被引文献298

引证文献18

二级引证文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部