期刊文献+

一类广义集值变分包含组

A System of Generalized Set-valued Variational Inclusions
下载PDF
导出
摘要 引入了一类新的广义集值变分包含组,应用预解算子技巧,建立了该类变分包含组与一类不动点问题的等价性,进而构造了求解该类变分包含组的迭代算法,并在适当的条件下,证明了该算法的收敛性. A new system of generalized set-valued variational inclusions is introduced. By using the implicit resolvent operator technique, the equivalence of the new system of generalized set-valued variational inclusions with a class of fixed point problems is established, then the iterative algorithm for finding the approximate solutions of the system of generalized variational inclusions is proposed. Under suitable conditions, the convergence of the iterative sequence generated by the algorithm suggested is also given.
出处 《华北水利水电学院学报》 2007年第5期96-98,共3页 North China Institute of Water Conservancy and Hydroelectric Power
关键词 广义集值变分包含组 迭代算法 收敛性 a system of generalized set-valued variational inclusions iterative algorithm convergence
  • 相关文献

参考文献5

二级参考文献10

  • 1Baiocchi C,Caopelo A.Variational and Quasivariation Inequalities.Application to Free Boundary Problerm[M]. Wiley, N Y, 1984.
  • 2Bensounssan A, Lions J L. Impulse Control and Quasivariation Inequalities[M]. Gauthiers-Villers, Paris, 1984.
  • 3Brezis H. Operateurs Maximaux.Monontone et Semigroups de Contractions dans les Espaces de Hilbert[M]. North-Holland, Amsterdam, 1973.
  • 4Yuan G X Z. KKM Theory and Applications[M]. Marcel Dekker, N Y, 1999.
  • 5Liu L S. J. Math. Anal. Appl. 1995,194:114-125.
  • 6Huang N,Comput Math Appl,2000年,40卷,2/3期,205页
  • 7Yuan G X Z,KKM Theory and Applications,1999年
  • 8Huang N J,Z Angew Math Mech,1999年,79卷,8期,569页
  • 9Huang N,J Comput Math Appl,1998年,35卷,10期,1页
  • 10Huang N J,J Math Anal Appl,1997年,216卷,197页

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部