期刊文献+

有1-因子的图和(g,f)-对等图 被引量:1

Graphs with 1-Factors and (g,f)-Uniform Graphs
下载PDF
导出
摘要 既是(g,f)-覆盖又是(g,f)-消去的图称为(g,f)-对等图.给出了有1-因子F的图是(g,f)-对等图、f-对等图的关于F的分支的若干充分条件,证明了如下定理:设G是一个图,F为G的1-因子,w(F)≥2且w(F)≡0(mod 2);g和f是定义在V(G)上的整数值函数并且对每个x∈V(G)都有g(x)≤f(x).若对F的每个分支C=xy,G-{x,y}是(g,f)-对等图,则G也是(g,f)-对等图.并指出定理中的条件在一定意义上是最好可能的. If a graph is (g,f)-covered and (g,f)-deleted, then it is called a (g,f)-uniform graph. Several sufficient conditions about components of factor F for graphs with 1 -factors to be (g,f) -uniform, f-uniform are given and the following result is proved: Let G be a graph with 1-factor F such that to(F)≥2 and to(F) -0 (mod 2). Let g andfbe two integer-valued functions defined on V(G) such that g(x)≤f(x) for each vertex x of V(G). Assume G-{x,y} be (g,f)-uniform for every component C =xy of F, then G is (g,f)-uniform. Furthermore, it has been shown that the conditions in the theorem are best possible in some sense.
出处 《烟台大学学报(自然科学与工程版)》 CAS 2007年第4期235-239,共5页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 国家自然科学基金资助项目(10571005) 山东省基础学科建设专项资金资助项目(06SZX07)
关键词 (G F)-因子 (g f)-对等图 graph (g,f) -factor (g ,f) -uniform graph
  • 相关文献

参考文献8

  • 1GaoJing-zhen.On factor—uniform graphs[J].数学进展,1999,28(4):378-380.
  • 2刘桂真.On (g, f)-Uniform Graphs[J].数学进展,2000,29(3):285-287. 被引量:4
  • 3汪长平,纪昌明.图的1-因子、f-因子和(g,f)-因子[J].数学物理学报(A辑),1999,19(1):85-88. 被引量:4
  • 4Enomoto H, Tokuda T. Complete-factors and f-factors [J]. Discrete Math, 2000, 220 : 239-242.
  • 5Li Jian-xiang, Ma Ying-hong. Complete-factors and (g, f)-factors [J]. Discrete Math, 2003, 265 : 385-391.
  • 6Lovasz L. Subgraphs with prescribed valencies [J]. J Combin Theory, 1970, (8) : 319-416.
  • 7Egawa Y, Enomoto H, Saito A. Factors and induced subgraphs[J]. Discrete Math, 1988, 68 : 179-189.
  • 8Tutte W T. The factors of graphs [J]. Can J Math, 1952, 4: 314-328.

二级参考文献1

  • 1L. Lovász. Ear-decompositions of matching-covered graphs[J] 1983,Combinatorica(1):105~117

共引文献6

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部