摘要
既是(g,f)-覆盖又是(g,f)-消去的图称为(g,f)-对等图.给出了有1-因子F的图是(g,f)-对等图、f-对等图的关于F的分支的若干充分条件,证明了如下定理:设G是一个图,F为G的1-因子,w(F)≥2且w(F)≡0(mod 2);g和f是定义在V(G)上的整数值函数并且对每个x∈V(G)都有g(x)≤f(x).若对F的每个分支C=xy,G-{x,y}是(g,f)-对等图,则G也是(g,f)-对等图.并指出定理中的条件在一定意义上是最好可能的.
If a graph is (g,f)-covered and (g,f)-deleted, then it is called a (g,f)-uniform graph. Several sufficient conditions about components of factor F for graphs with 1 -factors to be (g,f) -uniform, f-uniform are given and the following result is proved: Let G be a graph with 1-factor F such that to(F)≥2 and to(F) -0 (mod 2). Let g andfbe two integer-valued functions defined on V(G) such that g(x)≤f(x) for each vertex x of V(G). Assume G-{x,y} be (g,f)-uniform for every component C =xy of F, then G is (g,f)-uniform. Furthermore, it has been shown that the conditions in the theorem are best possible in some sense.
出处
《烟台大学学报(自然科学与工程版)》
CAS
2007年第4期235-239,共5页
Journal of Yantai University(Natural Science and Engineering Edition)
基金
国家自然科学基金资助项目(10571005)
山东省基础学科建设专项资金资助项目(06SZX07)