期刊文献+

D.C.集(凸集的差)约束的非凸二次规划的最优解集

The Optimal Solution Set of Non-convex Quadratic Minimization Problem over a D.C.Set
下载PDF
导出
摘要 本文研究D.C.集(凸集的差)上极小化非凸二次规划问题的最优解。我们首先证明了该问题的Lagrange对偶的稳定性,即不存在对偶间隙;接着利用该性质得到问题的全局最优性条件和最优解集,它可以像凸规划那样,借助它的对偶问题的解集精确地描述出来。最后,通过一个例子来说明这些结论。 We study the characterization problem of optimal solution sets of non-convex quadratic minimization problems over D.C. set (difference of convex sets). Firstly, we show that there is no dual gap between the primal problem and its dual problem, and then obtain its globally optimality conditions and optimal solution sets. As a convex programming, we can exactly describe the optimal solution set of the primal problem with the help of the optimal solution set of its dual problem. Finally, we give an example to illustrate the obtained results.
出处 《工程数学学报》 CSCD 北大核心 2007年第5期801-812,共12页 Chinese Journal of Engineering Mathematics
基金 福建省自然科学基金(S06500082006J0202) 福建省教育厅资助项目(JA050210) 福建省教育厅资助项目(JB06095).
关键词 D.C.规划 非凸二次规划 Lagrange对偶性 全局最优性条件 D.C. programming non-convex quadratic programming Lagrange duality global optimality condition
  • 相关文献

参考文献8

  • 1Tuy H D C. Optimization: Theory, Methods and Algorithms[M]. Horst R and Pardolos P M eds. Handbook of Global Optimization. Kluwer, Dordrecht, 1994:149-216
  • 2Le Thi Hoai An. The DC (difference of convex functions) programming and DCA revisite with DC models of real world nonconvex optimization problems[J]. Annals of Operations Research, 2005, 133:23-46
  • 3Stern R J, Wolkowicz H. Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations[J]. SIAM Journal on Optimization, 1995, 5:286-313
  • 4Yin Yu Ye, Shu Zhong Zhang. New results on quadratic minimization[J]. SIAM Journal on Optimization, 2003, 14(1): 245-267
  • 5陈宝林.最优化理论与算法[M].北京:清华大学出版社,2003.480-490.
  • 6Pham Dinh Tao, Le Thi Hoai An. A D.C. optimization algorithm for solving the trust-region subproblem[J]. SIAM Journal on Optimization, 1998, 8(2): 476-505
  • 7Pham Dinh Two, Le Thi Hoai An. Lagrangian stability and global optimality in nonconvex quadratic minmization over euclidean balls and spheres[J]. Journal of Convex Analysis, 1995, 2(1/2): 263-276
  • 8Rockafellar R T. Convex Analysis[M]. New Jersey Princeton: Princeton University Press, 1970

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部