期刊文献+

位势井及其对具异号源项波动方程的应用 被引量:4

Potential Well and its Applications to Wave Equations with Source Terms of Different Signs
下载PDF
导出
摘要 本文研究具有两个异号非线性源项的波动方程的初边值问题。应用位势井方法,解决了不具正定能量情况下问题整体解的存在性问题。证明了对于非线性项的指数在一定条件下,问题存在整体弱解。从而拓展了已知结果。 The initial boundary value problem of wave equations with two nonlinear source terms of different signs is considered. The global existence of solutions without positive energy is established. It is proven that the indices of the nonlinear terms this problem admits a global weak solution under certain conditions. Some known results are extended.
出处 《工程数学学报》 CSCD 北大核心 2007年第5期931-934,共4页 Chinese Journal of Engineering Mathematics
基金 国家自然科学基金(10271034) 哈尔滨工程大学基础研究基金(HEUFP05032) 黑龙江省教育厅科学技术研究项目(10551254) 哈尔滨工程大学创新基金.
关键词 半线性波动方程 整体解 存在性 位势井 semilinear wave equations global solutions existence potential well
  • 相关文献

参考文献14

  • 1Sattinger D H. On global solution of nonlinear hyperbolic equations[J]. Arch Rat Mech Anal, 1968, 30: 148-172
  • 2Lions J L. Quelques Methodes de Resolution des Problemes aux Limites non Lineaires[M]. Paris: Dunod, 1969
  • 3Tsutsumi M. On solutions of semilinear differential equations in a Hilbert space[J]. Math Japan, 1972, 17: 173-193
  • 4Glassay R T. Blow-up theorems for nonlinear wave equations[J]. Math Z, 1973, 32:183-203
  • 5Payne L E, Sattinger D H. Sadie points and instability of nonlinear hyperbolic equations[J]. Israel J Math, 1975, 22:273-303
  • 6Ball J M. Remarks on blow-up and nonexistence theorems for nonlinear evolution equations[J]. Quart J Math, 1977, 28:473-486
  • 7Levine H A. Instablity and nonexistence of global solutions to nonlinear wave equations of the form Pu = Au + F(u)[J]. Trans of Math AMS, 1974, 92:1-21
  • 8Levine H A. Some additional remarks on the nonexistence of global solutions to nonlinear wave equations[J]. SIAM J Math Anal, 1974, 5:138-146
  • 9Grillakis M. Regularity for the wave equation with critical nonlinearity[J]. Ann Math, 1990, 132:485-509
  • 10Geogev V, Todorova G. Existence of a solution of the wave equation with nonlinear damping and source terms[J]. Journal of Differential Equations, 1994, 109:295-308

二级参考文献10

  • 1刘亚成,王锋,刘大成.任意维数的强阻尼非线性波动方程(Ⅰ)——初边值问题[J].应用数学,1995,8(3):262-266. 被引量:14
  • 2Webb G F. Existence and Asymptotic Behavior for a Strongly Damped Nonlinear Wave Equation.Canad. J. Math., 1980, 32:631-643
  • 3刘亚成 刘大成.方程utt—α△ut—△u=f(u)的初边值问题[J].华中理工大学学报,1988,16(6):169-173.
  • 4Sattinger D H. On Global Solution of Nonlinear Hyperbolic Equations. Arch. Rat. Mech. Anal.,1968, 30:148-172
  • 5Tsutsumi M. On Solutions of Semilinear Differential Equations in a Hilbert Space. Math. Japan,1972, 17:173-193
  • 6Payne L E, Sattinger D H. Saddle POoints and Instability of Nonlinear Hyperbolic Equations. Israel.J. Math., 1975, 22:273-303
  • 7Lions J L. Quelques Methods de Resolution des Problem aux Limits Nonlinears. Paris: Dunod, 1969
  • 8Tsutsumi M. Existence and Nonexistence of Global Solutions of Nonlinear Parabolic Equations. Publ.RTMS, 1972/73(8): 211-229
  • 9Ikehata R. Some Remarks on the Wave Equations with Nonlinear Damping and Source Terms. Nonlinear Analysis, 1996, 27:1165-1175
  • 10Ang D D. On the Strongly Damped Wave eqation. SIAM. J. Math. Anal., 1988, 19:1409-1414

共引文献17

同被引文献21

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部