期刊文献+

TUHF代数上的Jordan映射 被引量:1

Jordan Maps on TUHF Algebras
下载PDF
导出
摘要 设T是TUHF代数,B是有理数域Q上的代数,r是一个有理数,φ是从T到B上的双射,并且任给a,b∈T,都有φ(r(ab+ba))=r(φ(a)φ(b)+φ(b)φ(a)).本文研究了φ的可加性.证明了当T有不变投影或为标准TUHF时,φ是可加的. Let T be a TUHF algebra, B is an associative algebra over the field Q of rational numbers and r∈Q. In this paper, the additivity of maps φ from T onto B is discussed, which is bijective and satisfies φ(r(ab+ba))=r(φ(a)φ(b)+φ(b)φ(a)) for all a,b∈T,If T is a standard TUHF algebra or T has an invariant projection, then φ is additive.
作者 邵霞 纪培胜
机构地区 青岛大学数学系
出处 《曲阜师范大学学报(自然科学版)》 CAS 2007年第4期1-5,共5页 Journal of Qufu Normal University(Natural Science)
基金 国家自然科学基金(10675086) 天元基金(10626031) 山东省自然科学基金(Y2006A03)
关键词 TUHF代数 JORDAN映射 可加性 TUHF algebras Jordan maps additivity
  • 相关文献

参考文献9

  • 1Hakeda J A. Additivity of Jordan-maps on AW-algebras[J]. Proc Amer Math Soc, 1986, 96:413-420.
  • 2Hakeda J A, Saito K. Additivity of Jordan-maps on operators[J]. J Math Soc Japan, 1986, 38:403-408.
  • 3Lu F. Multiplicative mappings of operator algebras[J]. Linear Algebra Appl, 2002, 347:283-291.
  • 4Lu F. Additivity of Jordan maps on standard operator algebras[J]. Linear Algebra Appl, 2002, 357:123-131.
  • 5Lu F. Jordan maps on associative algebras[J]. Commun Algebra, 2003, 31:2273-2286.
  • 6Ling Z, Lu F. Jordan maps of nest algebras[J]. Linear Algebra Appl, 2004, 387:361-368.
  • 7Martindale Ⅲ W S. When are multiplicative mappings additive[J]. Proc Amer Math Soc, 1969, 21:695-698.
  • 8Power S C. Limit Algebras[M]. Pitman Research Notes in Math Series 278. Harlow; Longman Sci Tech, 1992.
  • 9王利广,史可富.关于强奇异极大交换子代数的几个注记[J].曲阜师范大学学报(自然科学版),2006,32(1):11-13. 被引量:1

二级参考文献10

  • 1王利广,温玉珍.关于强奇异极大交换子代数(英文)[J].数学进展,2005,34(4):488-496. 被引量:1
  • 2Kadison R,Ringrose J.Fundamentals of the theory of Operator Algebras[M].Orlando:Academic Press,1986.
  • 3Popa S.Orthogonal pairs of *-subalgebras in finite von Neumann algebras[J].J Operator Theory,1983,9:253-268.
  • 4Sinclair A M,Smith R R.Strongly singular masas in type Ⅱ1 factors[J].Geom Funct Anal,2002,12:199-216.
  • 5Jones V F R,Popa S.Some properties of MASAs in factors[J].Invariant subspaces and other topics(Timisoara/Herculane,1981),89-102,Operator Theory:Adv Appl,Birkhauser,1982.
  • 6Christensen E.Subalgebras of a finite algebra[J].Math Ann,1979,243:17-29.
  • 7Popa S,Sinclair A M,Smith R R.Perturbations of subalgebras of type Ⅱ1 factors[J].J Funct Anal,2004,213:346-379.
  • 8Dykema K.Interpolated free group factors[J].Pacific J Math,1994,163:123-135.
  • 9Radulescu F.Random matrices,amalgamated free products and subfactors of the von Neumann algebra of a free group[J].Invnt Math,1994,115:347-389.
  • 10Voiculescu D,Dykema K,Nica A.Free Random Variable[M].CRM Monograph Series,AMS,Providence,RI,1992.

同被引文献8

  • 1赵玉松,张才仙,王茂波,吕世良.素环上的Jordan Triple(α,α)-导子[J].应用泛函分析学报,2006,8(1):57-60. 被引量:2
  • 2杜炜,张建华.套代数上的可乘导子[J].纺织高校基础科学学报,2007,20(2):153-155. 被引量:7
  • 3Martindale W S. When are multiplicative mappings additive? [ J]. Proc Amer Math Soc, 1969, 21:695-698.
  • 4Daif M N. When is a multiplieative derivation additive? [J]. Internat J Math and Math Sei, 1991, 14:615-618.
  • 5Bresar M. On the compositions of (α,β)-derivations of rings and applications to vN algebras[ J]. Acta Sci Math, 1992, 56: 369-375.
  • 6Golbasi O, Aydin N. On ner-ring ideals with (α,β)-derivation[ J]. Arch Math, 2007, 43:87-92.
  • 7Ji P. Jordan maps on triangular algebras[J]. Linear Algebra Appl, 2007, 426:190-198.
  • 8马秀娟,王利广.关于非交换独立性和依概率收敛(英文)[J].曲阜师范大学学报(自然科学版),2007,33(4):13-17. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部