期刊文献+

关于非交换独立性和依概率收敛(英文) 被引量:1

On Noncommutative Independence and Convergence in Probability
下载PDF
导出
摘要 研究了依概率收敛和非交换独立性(单调独立性和布尔独立性)之间的关系. In this paper, we study the relationship between convergence in probability and noncommutarive independence (monotonic independence and Boolean independence. )
出处 《曲阜师范大学学报(自然科学版)》 CAS 2007年第4期13-17,共5页 Journal of Qufu Normal University(Natural Science)
基金 National Natural Science Foundation of China(10626031,10471137)and Scientific ResearchStart-up Foundation of QFNU
关键词 单调独立性 布尔独立性 依概率收敛 算子代数 Monotone independence Boolean independence Convergence in probability, Operator algebra
  • 相关文献

参考文献10

  • 1Kadison R, Ringrose J. Fundamentals of the theory of Operator Algebras[M]. Vol. Ⅰ and Ⅱ, Orlando: Academic Press, 1983,1986.
  • 2Voiculescu D. The analogues of entropy and of Fisher's information measure in free probability theory Ⅲ[J]. Geom Funct Anal, 1996, 6: 172-199.
  • 3Voiculescu D, Dykema K, Nica A. Free Random Variables[M], CRM Mono graph Series. Vol. 1, AMS, Providence, RI, 1992.
  • 4Ge L. Applications of free entropy to finite von Neumann alegbras Ⅱ [J]. Ann Math, 1998, 147: 143-157.
  • 5Wang Liguang, Shi Kefu. Remarks on Strongly singular Maximal Abelian Self-adjoint subalgebras [J]. Journal of Qufu Normal University (Natural Science), 2006, 32(1) : 11-13.
  • 6Muraki N. Monotonic independence, monotonic central limit theorem and monot onic law of small numbers[J]. Infin Dimens Anal Quantum Probab Relat Top, 2001, 4: 39-58.
  • 7Muraki N. Monotonic convolution and monotonic Levy-Hin\v cin formula [J]. preprint, 2000.
  • 8Speicher R, Woroudi R. Boolean convolution[J], in Free Probability Theory, Ed Voiculescu, 267-279, Fields inst Commun, Vol. 12, AMS, 1997.
  • 9Barndorff O E, Thorbjornsen S. The Levy-Ito decomposition in free probability [J]. Probab Theory Relat Fields, 2005, 131: 197-228.
  • 10Bercovici H. A remark on monotonic convolution [J]. Infin. Dimens Anal Quantum Probab Relat Top, 2005, 8(1) :117- 120.

同被引文献8

  • 1赵玉松,张才仙,王茂波,吕世良.素环上的Jordan Triple(α,α)-导子[J].应用泛函分析学报,2006,8(1):57-60. 被引量:2
  • 2杜炜,张建华.套代数上的可乘导子[J].纺织高校基础科学学报,2007,20(2):153-155. 被引量:7
  • 3Martindale W S. When are multiplicative mappings additive? [ J]. Proc Amer Math Soc, 1969, 21:695-698.
  • 4Daif M N. When is a multiplieative derivation additive? [J]. Internat J Math and Math Sei, 1991, 14:615-618.
  • 5Bresar M. On the compositions of (α,β)-derivations of rings and applications to vN algebras[ J]. Acta Sci Math, 1992, 56: 369-375.
  • 6Golbasi O, Aydin N. On ner-ring ideals with (α,β)-derivation[ J]. Arch Math, 2007, 43:87-92.
  • 7Ji P. Jordan maps on triangular algebras[J]. Linear Algebra Appl, 2007, 426:190-198.
  • 8邵霞,纪培胜.TUHF代数上的Jordan映射[J].曲阜师范大学学报(自然科学版),2007,33(4):1-5. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部