期刊文献+

一类非线性发展方程行波解的不稳定性

Instability of traveling waves of nonlinear evolution equation
下载PDF
导出
摘要 利用tanh函数与计算机代数,可以找到许多具有实际背景的非线性发展方程精确行波解的存在性,但对它们稳定性的研究,目前还很少见.利用谱分析与半群理论的方法,对一类描述浅水波在对流中运动的非线性发展方程,就其行波解的非线性不稳定性进行详细的讨论,并得到其行波解在H2(R)扰动下的非线性不稳定性. Using the tanh function and the computer algebra, the precise traveling wave solutions of many nolinear evolution equations with the actual background may be found. But it is rare to the research of their stability at present. In this paper the spectrum analysis and the semi-group theory method was used to study the instability of the traveling waves of nonlinear evolution equation of surface waves in a convecting fluid. And it proves that the traveling waves are nonlinearly unstable under H2 (R) perturbations.
作者 季梅
出处 《山东理工大学学报(自然科学版)》 CAS 2007年第5期47-49,共3页 Journal of Shandong University of Technology:Natural Science Edition
关键词 非线性发展方程 行波解 不稳定性 本质谱 nonlinear evolution equations traveling wave instability essential spectrum
  • 相关文献

二级参考文献23

  • 1Schechter,M.,Spectra of partial differential operators [M],American Elsevier Publishing Company,INC.-New York,1971.
  • 2Elgin,J.N.& Wu,X.S.,Stability of cellular states of the Kuramoto-Sivashinsky equation [J],SIAM J.Appl.Math.,56:6(1996),1621-1638.
  • 3Lan,Y.T.,The "cocoon" bifurcations in three-dimensional systems with two fixed points [J],Internat.J.Bifur.Chaos Appl.Sci.Engrg.,2:3(1992),543-558.
  • 4Feudel,F.,Feudel,U.& Brandenburg,A.,On the Bifurcation phenomena of the Kuramoto-Sivashinsky equation [J],Internat.J.Bifur.Chaos Appl.Sci.Engrg.,3:5(1993),1299-1303.
  • 5Kukavica,I.,Oscillations of solutions of the Kuramoto-Sivashinsky equation [J],Physica D,76:4(1994),369-374.
  • 6Dawson,S.P.& Mancho,A.M.,Collections of heteroclinic cycles in the Kuramoto-Sivashinsky equation [J],Physica D,100:3-4(1997),231-256.
  • 7Amdjadi,F.,Aston,P.J.& Plechac,P.,Symmetry breaking Hopf bifurcations in equations with 0(2)symmetry with application to the Kuramoto-Sivashinsky equation [J],J.Comput.Phys.,131:1(1997),181-192.
  • 8Tadmor,E.,The well-posedness of the Kuramoto-Sivashinsky equation [J],SIAM J.Math.Anal.,17:4(1986),884-893.
  • 9Goldstein,J.A.,Semigroups of linear operators and applications [M],Oxford University Press,New York,1985.
  • 10Shatah,J.& Strauss,W.,Spectral condition for instability [J],Contemporary Mathematics,255(2000),189-198.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部