期刊文献+

基于二进制序列分解的低密度校验码

Low-density parity-check code based on binary sequence splitting
下载PDF
导出
摘要 提出了利用分解二进制序列构造的非正则低密度校验码的新颖简单的方法.仿真结果表明这种方法构造的低密度校验码在高斯白噪声信道BPSK调制下的迭代译码性能很好,并且在没有环长度为4的情况下具有较好的码重分布特性. A new and simple approach to construct irregular low-density parity-check (LD- PC) code based on the binary sequence splitting was proposed. Experimental results show that constructed irregular LDPC code with iterative decoding perform well over the AWGN channel and have a good code weight distribution with 4-cycle free.
作者 孙涛 朱莉艳
出处 《山东理工大学学报(自然科学版)》 CAS 2007年第5期53-56,共4页 Journal of Shandong University of Technology:Natural Science Edition
关键词 低密度校验码 TANNER图 消环 最小环长 序列分解 LDPC code Tanner graph cycle-free girth sequence splitting
  • 相关文献

参考文献5

  • 1潘宇,徐友云,张海滨,罗汉文.构造接近香农极限的低密度校验码[J].电讯技术,2005,45(4):24-27. 被引量:4
  • 2Gallager. R G. Low density parity check codes[J].IEEE Trans Inform Theory,1962,27(8) : 21- 28.
  • 3GWU G, Ren P Y. A class of improved low desity paritycheck codes constructed based on Gallager's form[J].IEEE Trans. Inform Theory, 2001,47(6) :694-697.
  • 4Kou Y, Lin Sh,Fossorier M P C. Low-density parity-check codes based on finite geometries: a rediscovery and new results[J].IEEE Trans Inform Theory, 2001,47(7):2 711-2 736.
  • 5Mackay D J C. Good error-correcting codes based on very spars matrices[J]. IEEE Trans Inform Theory, 1999,45 (2) : 399-431.

二级参考文献11

  • 1R Gallager. Low - Density Parity - Cheek Codes [ J ].IRE Trans, Info, Theory, 1962, 7:21 -28.
  • 2D J C Mackay, R M Neal. Good Codes Based on Very Sparse Matrices, Cryptography and Coding[ A ]. 5th IMA Conf. C. Boyd[C]. 1995. 100 -111.
  • 3Y Kou, S Lin, M Fossorier. Low - density parity - check codes based on finite geometries: a rediscovery and new results[J]. IEEE Trans. Inform. Theory, 2001, 47(7) :2711 - 2736.
  • 4T Richardson, A Shokrollahi, R Urbanke. Design of capacity - approaching irregular low - density parity - check codes [ J ]. IEEE Transactions on Information Theory,2001,47:619 -637.
  • 5T Richardson, R L Urbanke. The Capacity of Low - density Parity Check codes Under Message - Passing Decoding[J]. IEEE Trans on Information Theory, 2001, 47(2) : 599 -618.
  • 6R M Tanner. A Reeursive Approach to Low Complexity Codes[J]. IEEE Trans. Inform. Theory, 1981, 27:533- 547.
  • 7N Wibeg, H -A Loeliger, R Kotter. Codes and Iterative Decoding on General Graphs [ J ]. Eru, Trans. Telecommun. , 1995, 6:513 -525.
  • 8Tannar, R M. Minimum -distance Bounds by Graph Analysis[Jl. IEEE Trans. Inform. Theory, 2001, 47:808 - 821.
  • 9F R Kschischang, B J Frey,H A Loeliger. Factor graphs and the sum - product algorithm [ J ]. IEEE Trans. Inform. Theroy, 2001,47(2) : 498 -519.
  • 10F R Kschichang, B J Frey. Iterative decoding of compound codes by probability propagation in graphical models[J]. IEEE J. Select. Areas Commun. , 1998,16(2) : 219 -230 .

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部