摘要
针对遗传算法在搜索最优组播树的过程中易发生早熟收敛的缺点,提出一种抑制早熟的混沌遗传算法.利用混沌的随机性和遍历性,将混沌扰动算子加入到遗传算法的操作中,当判断种群有早熟发生时,就对该种群进行类似变异的混沌扰动操作,从而增加了种群的多样性,既保留遗传算法的全局搜索能力又能有效改善算法性能.仿真结果表明,该算法能克服早熟收敛的缺点,又能快速、有效地构造出满足QoS约束要求的最优组播树.
To overcome the drawback that the premature convergence is liable to take place in the process of optimal multicast tree searching by genetic algorithm, a chaotic genetic algorithm is proposed to inhibit the premature. Introducing the intrinsic stochastic property and ergodicity of chaos, the algorithm proposed employs the chaotic perturbation in GA to operate the population with a mutation-like chaotic perturbation when judging that the premature happens. Thus, the population becomes more diverse and the premature convergence can be overcome effectively with GA' s ability in global search kept and algorithm performance greatly improved. Simulation results showed that the proposed algorithm can also build an optimal multicast tree efficiently and quickly to meet the requirement of QoS restriction.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2007年第10期1446-1449,共4页
Journal of Northeastern University(Natural Science)
基金
国家自然科学基金资助项目(60274099)
国家高技术研究发展计划项目(2004AA412030)
教育部流程工业综合自动化重点实验室开放课题