期刊文献+

基于过程神经网络的短期负荷预测 被引量:1

Short-Term Load Forecasting Based on Process Neural Network
下载PDF
导出
摘要 针对目前常用方法在解决负荷预测问题时,结果往往难以达到工程要求精度的现状,利用过程神经网络输入为时间函数以及预测精度高的特点,建立了基于过程神经网络的电力系统短期负荷预测模型;给出了模型的结构,基于函数正交基展开的离散数据拟合方法以及模型的学习算法.针对东北某地区电网的日负荷数据,进行了模型训练和负荷预测正确性的研究.结果表明,所建立的预测模型对负荷的预测准确率高,优于BP神经网络负荷预测模型的预测结果. Conventionally the electric load forecasting can hardly attain a result whose accuracy meets what's required. A short-term load forecasting model is therefore developed to .solve the problem, based on the process neural network of which the input is the function of time and the high forecasting accuracy is available. Describes the structure of the model, discrete data fitting method by the expansion of function orthogonal basis and learning algorithm. According to the daily load data of a certain power network in Northeast China, the model training and the accuracy of load forecasting were investigated. The simulation results showed that the load forecasting model based on process neural network is better than on BP neural network.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第10期1450-1453,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(60574050)
关键词 过程神经网络 短期负荷预测 函数正交基 离散数据拟合 学习算法 process neural network (PNN) short-term load forecasting orthogonal function basis discrete data fitting learning algorithm
  • 相关文献

参考文献10

  • 1Alfares H K, Mohammad N. Electric load forecasting:literature survey and classification of method [J].International Journal of Systems Sceience,2002,33(1):23-34.
  • 2Liu K,Subbarayan S,Shoults R R, et al. Comparison of very short-term load forecasting techniques[J]. IEEE Trans on Power Systems, 1996,11(2):877-882.
  • 3Singh D, Singh S P. Self organization and leaming methods in short term electric load forecasting: a review [J]. Electric Power Components and Systems, 2002,30(10):1075-1089.
  • 4Chen H C, Huang K H, Chang L Y. Application of neural networks for very short-term load forecasting in power systems[C].//International Symposium on Neural Networks. Berlin: Springer-Verlag, 2005,628-633.
  • 5常玉清,王小刚,王福利.基于多神经网络模型的软测量方法及应用[J].东北大学学报(自然科学版),2005,26(6):519-522. 被引量:13
  • 6何新贵,梁久祯,许少华.过程神经网络的训练及其应用[J].中国工程科学,2001,3(4):31-35. 被引量:87
  • 7He X G, Liang J Z. Process neural networks [C] // Proceedings of the Conference on Intelligent Information Processing. Berlin: Springer-Verlag, 2000,143-146.
  • 8柳重堪.正交函数及应用[M].北京:国防工业出版社,1982,50-60.
  • 9俞秋阳,朱斌,郭伟.基于RBF神经网络的短期负荷预测模型设计[J].继电器,2004,32(17):34-37. 被引量:10
  • 10Hippert H S, Pedreira C E. Estimating temperature profiles for short-term load forecasting: neural networks compared to linear modds[J]. IEEE Proceedings, 2004,151(4):543-547.

二级参考文献16

  • 1高辉清,孙卫东.人工神经网络预测和决策模型[J].预测,1995,14(4):68-72. 被引量:13
  • 2Zhang Li I,Nature,1998年,395卷,37页
  • 3Mejdell T, Skogestad S. Output estimation using multiple secondary measurements:highpurity distillation[J].Process Systems Engineering,1993,9(10):1641-1653.
  • 4Yang S H, Wang X Z, Mcgreavy C,et al.Soft sensor based predictive control of industrial fluid catalytic cracking processes[J].Institution of Chemical Engineers Trans IchemE, 1998,76(5):499-508.
  • 5Wang X D, Luo R F, Shao H H. Designing a soft sensor model for a distillation column with the fuzzy distributed radial basis function neural network[A].Proc IEEE 35th Conf[C]. Kobe:The Publishers of Society of Instrument and Control Engineers, 1999.1714-1719.
  • 6Dunteman G H.Principal component analysis[M]. London: SAGE Publication LTD, 1989.215-229.
  • 7Dong D, McAvoy T J. Nonlinear principal component analysis based on principal curves and neural networks[J]. Computer Chemical Engineer,1996,20(65):245-257.
  • 8Wise B M, Richer N L, Veltkamp D F,et al. A theoretical basis for the use of principal component models for modeling multivariate process[J].Process Control and Quality, 1990,23(1):41-51.
  • 9Jain A K, Murty M N, Flynn P J. Data clustering: a review[J].ACM Computing Surveys,1999,31(3):264-323.
  • 10MacQueen J. Some methods for classification and analysis of multivariate observations[A]. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability[C]. Berkeley:The Publishers of Society of Mathematics, 1967.281-297.

共引文献107

同被引文献18

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部