期刊文献+

基于SVM的概念设计创新度机器评价模型

Machine-evaluation model of the creative degree in conceptual design on Support Vector Machines
下载PDF
导出
摘要 针对概念设计创新度评价这一问题,本文首先提取概念设计中手机实体的外观造型特征,将特征量化后作为测试样本,然后利用一种改进的支持向量机分类器Shear-SVC-KNN进行评价,取得的评价结果准确率较高,效果较好。 As for the evaluation of the creative degree in conceptual design, firstly, the paper extracts the qualified characteristics of the mobile telephone outline, rescales all characteristics with the specified range as the train samples, and evaluates the creativity degree of the conceptual design of the mobile telephone outline by using a reformative classification method Shear - SVC - KNN based on SVMs. The experiment shows that the result of evaluation is accurate and the conclusion of this experiment is satisfactory.
出处 《山东轻工业学院学报(自然科学版)》 CAS 2007年第3期18-22,共5页 Journal of Shandong Polytechnic University
基金 山东省创新设计软构件与集成系统项目基金资助(03BS003)
关键词 统计学习理论 支持向量机分类器 概念设计评价 K最近邻 statistical leaming theory support-vector-machine classification concept design evaluation K- Nearest Neighbor(KNN)
  • 相关文献

参考文献8

  • 1VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 2邓乃杨 田英杰.数据挖掘中的新方法-支持向量机[M].北京:科学出版社,2004..
  • 3Cortes C, Vapnik V N. Supprot Vector netwodcs[J] .Machine Leaming, 1995, 20(5) :273 - 297.
  • 4Chang C C, Lin C J. LIBSVM: a library for support vector machines [EB/OL]. http://www.csie. ntu. edu. tw/cjlin/libsvm, 2006 - 03 - 11.
  • 5李蓉,叶世伟,史忠植.SVM-KNN分类器——一种提高SVM分类精度的新方法[J].电子学报,2002,30(5):745-748. 被引量:133
  • 6李红莲,王春花,袁保宗.一种改进的支持向量机NN-SVM[J].计算机学报,2003,26(8):1015-1020. 被引量:71
  • 7边擎祺,张学工.模式识别[M].北京:清华大学出版社,2002..
  • 8Lin K M, Kao W C, Sun C, et al. Radius margin bounds for support vector machines with the RBF kernel[M]. New York: Neural Computation, 2003.

二级参考文献8

  • 1Hearst M A, Dumais S T, Osman E, Platt J, Scholkopf B.Support Vector Machines. IEEE Intelligent Systems, 1998, 13(4) : 18-28.
  • 2Ke Hai-Xin,Zhang Xue-Gong. Editing support vector machines.In: Proceedings of International Joint Conference on Neural Networks, Washington, USA, 2001, 2:1464-1467.
  • 3Vapnik V N. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10 (5): 988-999.
  • 4Vapnik V N. Statistical Learning Theory. 2nd ed. New York:Springer-Verlag : 1999.
  • 5Klaus-Robert Mailer, Sebastian Mika, Gunnar Raetsch, Koji Tsuda, and Bernhard Schoelkopf. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12 (2): 181-201.
  • 6Burges C J C. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
  • 7张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276
  • 8张鸿宾,孙广煜.近邻法参考样本集的最优选择[J].电子学报,2000,28(11):16-21. 被引量:8

共引文献398

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部