期刊文献+

Cohomogeneity Two Actions on Flat Riemannian Manifolds

Cohomogeneity Two Actions on Flat Riemannian Manifolds
原文传递
导出
摘要 In this paper, we study flat Riemannian manifolds which have codimension two orbits, under the action of a closed and connected Lie group G of isometries. We assume that G has fixed points, then characterize M and orbits of M. In this paper, we study flat Riemannian manifolds which have codimension two orbits, under the action of a closed and connected Lie group G of isometries. We assume that G has fixed points, then characterize M and orbits of M.
作者 R.MIRZAIE
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第9期1587-1592,共6页 数学学报(英文版)
关键词 Flat Riemannian manifolds cohomogeneity Flat Riemannian manifolds, cohomogeneity
  • 相关文献

参考文献12

  • 1Wolf, J. A.: Spaces of Constant Curvature, Berkeley, California, 1977
  • 2Alekseevsky, A. V., Alekseevsky, D. V.: G-manifolds with one dimensional orbit space. Adv. Soy. Math., 8, 1-31 (1992)
  • 3Alekseevsky, A. V., Alekseevsky, D. V.: Riemannian G-manifolds with one dimensional orbit space. Ann. Global Anal. Geom., 11, 197-211 (1993)
  • 4Mirzaie, R., Kashani, S. M. B.: On cohomogeneity one fiat Riemannian manifolds. Glasgow Math. J., 44, 185-190 (2002)
  • 5Podesta, F., Spiro, A.: Some topological properties of cohomogeneity one manifolds with negative curvature. Ann. Global. Anal. Geom., 14, 69-79 (1966)
  • 6Searle, C.: Cohomogeneity and positive curvature in low dimensions. Math. Z., 214, 491-498 (1993)
  • 7Alekseevsky, A. V., Alekseevsky, D. V.: Asystatic G-manifolds. Procced of the Workshop on Diff. Geom. Topol. Ed. R. Caddeo. F. Trierri., 1-22 (1993)
  • 8Bredon, G. E.: Introduction to Compact Trnasformation Groups, Acad. Press., New York, London, 1972
  • 9Palais, R. S., Terrg, Ch. L.: A general theory of canonical forms, Am. Math. Soc., 300, 771-789 (1987)
  • 10Bredon, G. E.: Topology and Geometry, Spriger-verlag, New york, 1993

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部