期刊文献+

q-Besselian Frames in Banach Spaces 被引量:4

q-Besselian Frames in Banach Spaces
原文传递
导出
摘要 In this paper, we introduce the concepts of q-Besselian frame and (p, σ)-near Riesz basis in a Banach space, where a is a finite subset of positive integers and 1/p+1/q = 1 with p 〉 1, q 〉 1, and determine the relations among q-frame, p-Riesz basis, q-Besselian frame and (p, σ)-near Riesz basis in a Banach space. We also give some sufficient and necessary conditions on a q-Besselian frame for a Banach space. In particular, we prove reconstruction formulas for Banach spaces X and X^* that if {xn}n=1^∞ C X is a q-Besselian frame for X, then there exists a p-Besselian frame {y&*}n=1^∞ belong to X^* for X^* such that x = ∑n=1^∞ yn^*(x)xn for all x ∈ X, and x^* =∑n=1^∞ x^*(xn)yn^* for all x^* ∈ X^*. Lastly, we consider the stability of a q-Besselian frame for the Banach space X under perturbation. Some results of J. R. Holub, P. G. Casazza, O. Christensen and others in Hilbert spaces are extended to Banach spaces. In this paper, we introduce the concepts of q-Besselian frame and (p, σ)-near Riesz basis in a Banach space, where a is a finite subset of positive integers and 1/p+1/q = 1 with p 〉 1, q 〉 1, and determine the relations among q-frame, p-Riesz basis, q-Besselian frame and (p, σ)-near Riesz basis in a Banach space. We also give some sufficient and necessary conditions on a q-Besselian frame for a Banach space. In particular, we prove reconstruction formulas for Banach spaces X and X^* that if {xn}n=1^∞ C X is a q-Besselian frame for X, then there exists a p-Besselian frame {y&*}n=1^∞ belong to X^* for X^* such that x = ∑n=1^∞ yn^*(x)xn for all x ∈ X, and x^* =∑n=1^∞ x^*(xn)yn^* for all x^* ∈ X^*. Lastly, we consider the stability of a q-Besselian frame for the Banach space X under perturbation. Some results of J. R. Holub, P. G. Casazza, O. Christensen and others in Hilbert spaces are extended to Banach spaces.
作者 Yu Can ZHU
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2007年第9期1707-1718,共12页 数学学报(英文版)
基金 the Natural Science Foundation of Fujian Province,China(No.Z0511013) the Education Commission Foundation of Fujian Province,China(No.JB04038)
关键词 Q-FRAME p-Riesz basis q-Besselian frame (p σ)-near Riesz basis q-frame, p-Riesz basis, q-Besselian frame, (p, σ)-near Riesz basis
  • 相关文献

参考文献15

  • 1Duffin, R. J., Schaeffer, A. C.: A class of nonharmonic fourier series. Trans. Amer. Math. Soc., 72, 341-366 (1952)
  • 2Young, R. M., Introdution to Nonharmonic Fourier Series, Academic Press, New York, 1980
  • 3Casazza, P. G.: The art of frame theory. Taiwan Residents J. of Math., 4(2), 129-201 (2000)
  • 4Casazza, P. G., Christensen, O.: Perturbation of operators and applications to frame theory. J. Fourier Anal. Appl., 3(5), 543-557 (1997)
  • 5Casazza, P. G., Christensen, O.: Frames containing a Riesz basis and preservation of this property under perturbations. SIAM J. Math. Anal., 29(1), 266-278 (1998)
  • 6Christensen, O.: A Paley-Wiener theory for frame. Proc. Amer. Math. Soc., 123(7), 2199-2201 (1995)
  • 7Christensen, O.: Frame perturbations. Proc. Amer. Math. Soc., 123(4), 1217-1220 (1995)
  • 8Christensen, O.: An Introduction to Frames and Riesz Bases, Birkhauser, Boston, 2003
  • 9Favier, S. J., Zalike, R. A.: On the stability of frame and Riesz bases. Appl. Comput. Harm. Anal., 2, 160-173 (1995)
  • 10Holub, J. R.: Per-frame operators, Besselian frame, and near-Riesz bases in Hilbert spaces. Proc. Amer. Math. Soc., 122(3), 779-785 (1994)

同被引文献36

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部