摘要
In this paper, we introduce the concepts of q-Besselian frame and (p, σ)-near Riesz basis in a Banach space, where a is a finite subset of positive integers and 1/p+1/q = 1 with p 〉 1, q 〉 1, and determine the relations among q-frame, p-Riesz basis, q-Besselian frame and (p, σ)-near Riesz basis in a Banach space. We also give some sufficient and necessary conditions on a q-Besselian frame for a Banach space. In particular, we prove reconstruction formulas for Banach spaces X and X^* that if {xn}n=1^∞ C X is a q-Besselian frame for X, then there exists a p-Besselian frame {y&*}n=1^∞ belong to X^* for X^* such that x = ∑n=1^∞ yn^*(x)xn for all x ∈ X, and x^* =∑n=1^∞ x^*(xn)yn^* for all x^* ∈ X^*. Lastly, we consider the stability of a q-Besselian frame for the Banach space X under perturbation. Some results of J. R. Holub, P. G. Casazza, O. Christensen and others in Hilbert spaces are extended to Banach spaces.
In this paper, we introduce the concepts of q-Besselian frame and (p, σ)-near Riesz basis in a Banach space, where a is a finite subset of positive integers and 1/p+1/q = 1 with p 〉 1, q 〉 1, and determine the relations among q-frame, p-Riesz basis, q-Besselian frame and (p, σ)-near Riesz basis in a Banach space. We also give some sufficient and necessary conditions on a q-Besselian frame for a Banach space. In particular, we prove reconstruction formulas for Banach spaces X and X^* that if {xn}n=1^∞ C X is a q-Besselian frame for X, then there exists a p-Besselian frame {y&*}n=1^∞ belong to X^* for X^* such that x = ∑n=1^∞ yn^*(x)xn for all x ∈ X, and x^* =∑n=1^∞ x^*(xn)yn^* for all x^* ∈ X^*. Lastly, we consider the stability of a q-Besselian frame for the Banach space X under perturbation. Some results of J. R. Holub, P. G. Casazza, O. Christensen and others in Hilbert spaces are extended to Banach spaces.
基金
the Natural Science Foundation of Fujian Province,China(No.Z0511013)
the Education Commission Foundation of Fujian Province,China(No.JB04038)