期刊文献+

基于多重分形谱的神经网络建模及股价指数预测 被引量:5

Neural Network Modeling and Stock Price Index Forecasting Based on Multifractal Spectrum
下载PDF
导出
摘要 基于多重分形理论,对上证指数进行实证研究,确认了多重分形谱参数与股价指数及股指收益率之间的统计关系,以此确定神经网络的输入、输出变量来构建以多重分形理论为依据的神经网络模型,并将其应用于股价指数的预测中。结果表明,该神经网络模型能够取得比较好的预测效果,预测的平均准确率达98.9%,而且该模型能够较好地模拟股市的短期走势,对防范和控制风险具有现实意义。 Based on the multifractal theory, this paper presents an empirical research on the data of Shanghai Stock Price and analyzes statistically the correlations between the parameters of the multifractal spectrum and the stock price index and the logarithmic return. Through this correlation, this paper determines the input and output variables of neural network model based on multifractal theory and applies it to forecasting the stock price index. Results of prediction experiments with real data prove the efficiency of the prediction method based on multifractal spectrum. The average veracity gets to 98. 9%, indicating that this model can simulate stock market trend of short term. It is useful to prevent and control risks.
作者 庄新田 苑莹
出处 《系统管理学报》 北大核心 2007年第4期351-355,共5页 Journal of Systems & Management
基金 国家自然科学基金资助项目(70371062)
关键词 BP神经网络模型 多重分形谱 预测 收益率 股价指数 BP neural network multifractal spectrum forecasting return stock price index
  • 相关文献

参考文献9

二级参考文献22

  • 1罗发龙,李衍达.神经网络信号处理研究评述[J].电子瞭望,1993(9):5-10. 被引量:13
  • 2Lapedes A,Farber R.A self—optimizing,nonsymmetrical neural net for content addressable memory and pattern recognition[J].Physica 22D.1986.247-259.
  • 3Werbos P.Beyond regression;new tools for prediction and analysis in the behavioral siences[J].Ph D Dissertation,Harvard University,1974.
  • 4Weigend A S Paradigm change in prediction.In:Tong H ed.Chaos and Forecasting[J].Singapore:World Scientific,1995:145-160.
  • 5Baba N.Asakawa H.,Smo K.,Application of techniques of computational intelligence for constructing reliable decision support systems[J].IJCNN International Joint Conference on Neural Networks.1999.6:3856-3859.
  • 6Baba N..Asakawa H.,Inoue N.,Application of soft computing techniques for dealing Tokyo stock exchange prices indexes (TOPIX)[J].Third International Conference on Knowledge—Based Intelligent Information Engineering Systems,1999:542-545.
  • 7Baba N.Handa H.,Utilization of neural network for constructing a user friendly decision support system to deal stocks[J].Proceedings IEEE International Conference on Neural Networks,1995,2:818-823.
  • 8Jung—Hua Wang.Shiuan—Ming Chen,Jia—Yann Leu,Stock trading decision support system using a rule,selector based on sliding window[J]IEEE Intemational Conference on Systems,Man,and Cybemetics,Computational Cybemetics and Simulation,1997,1:559-564.
  • 9Kimoto.T.,Asakawa,K.,Yoda,M.,Takeoka.M,Stock market prediction system with mcxtular neural networks[J].IJCNN International Joint Conference on Neural Networks,1990:1-6.
  • 10Yang Yiwen,Liu Guizhong,Zhang Zongping,Stock market trend prediction based on neural networks,muhiremlution analysis and dynamical reconstruction[J].Proceedings of the IEEE/IAFE/INFORMS Conference on Computational Intelligence for Financial Engineering (CIFEr),2000:155-156.

共引文献80

同被引文献113

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部