期刊文献+

一种求解振动方程的递推方法 被引量:2

A Recursion Method for Vibration Equations
下载PDF
导出
摘要 提出了一种简便的求解结构振动方程的递推方法。该方法类似于有限元方法对空间进行离散处理的做法,把时间域离散成一系列小区间,在每一小区间对动力学方程进行简化处理以便求出其解析解,然后利用连续性条件导出递推关系式。与传统的数值积分法(如差分法、Wilsonθ及Newmarkβ法等)只是从数学角度进行近似处理不同的是:该方法充分利用了原动力学方程的信息,具有明确的物理意义。就线性和非线性振动方程进行了数值模拟运算,结果表明了该方法在动力响应分析中的有效性。 A simple recursion method was presented for the discretization to the space domain in finite element solving structure vibration equations. Similar with method, the time domain was divided into a series of small time segment. At every time segment, the vibration equation was simplified so that its analytic solution can be easily obtained. And then, the recursion expression was derived by using the continuity conditions. Different from the conventional direct integration methods, such as difference method, Wilson θ method and Newmark β method, which dealt with the differential operator from the pure mathematical aspect, the present method makes full use of the physical information of original vibration equation. Numerical examples of linear and nonlinear vibration equations were performed, the results demonstrate that this method is efficient in dynamic analysis.
出处 《力学季刊》 CSCD 北大核心 2007年第3期497-502,共6页 Chinese Quarterly of Mechanics
关键词 数值积分 振动 非线性 动力响应 numerical integration vibration nonlinear dynamic analysis
  • 相关文献

参考文献8

  • 1Humai J L.Dynamics of Structures[M].Prentice-Hall,Englewood Cliffs,NJ,1990.
  • 2Petyt M.Introduction to Finite Element Vibration Analysis[M].Cambridge UniversityPress,New York,1990.
  • 3Jordan D W,Smith P.Nonlinear Ordinary Differential Equations[M].Oxford UniversityPress,New York,1990.
  • 4Subbaraj K,Dokainish M A.A survery of direct time-integration methods in computationalstructural dynamics[J].Computers and Structures,1989,32(6):1371-1401.
  • 5Bathe K J,Wilson E L.Numerical Methods in Finite ElementAnalysis[M].Prentice-Hall,Englewood Cliffs,NJ,1976.
  • 6Fung T C.Unconditionally stable higher-order Newmark methods by sub-steppingprocedure[J].Computational Methods in Applied Mechanics and Engineering,1997,147(1):61-84.
  • 7Lozina Z.A comparison of harmonic acceleration method with the other commonly usedmethods for calculation of dynamic transient response[J].Computers andStructures,1988,29(2):227-240.
  • 8Fung T C.Third order complex-time-step methods for transient analysis[J].ComputationalMethods in Applied Mechanics and Engineering,2001,190(10):2789-2802.

同被引文献15

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部