期刊文献+

推荐系统中一种新的相似性计算方法 被引量:4

A New Similarity Method Used in Recommender Systems
下载PDF
导出
摘要 随着互联网的发展,推荐系统逐步得到广泛应用,协同过滤是其中的关键技术之一,它根据相似用户的喜好产生对目标用户的推荐。随着用户和项目数量的增加,用于产生推荐的数据集将极端稀疏,协同过滤系统的性能下降。为此,提出了一种新的用户多层相似性度量,不仅降低数据稀疏性的影响,而且克服了相似不相同的问题。实验表明,该度量方式能够提高协同过滤系统的推荐质量。 Recommender systems are becoming increasingly popular with the evolution of the Internet, and collaborative filtering (CF) is one of the most important technologies in recommender systems. The performance of CF systems degrades with increasing number of customers and items. So, a new multiple-level user similarity is presented, which not only overcomes the difficulty of data sparsity, but also solves the "similar but not same" problem. The experimental results show that the presented algorithm can improve the performance of CF systems in both the recommendation quality and efficiency.
出处 《计算机科学》 CSCD 北大核心 2007年第8期187-189,共3页 Computer Science
基金 南京信息工程大学科研基金资助项目(Y507)资助
关键词 推荐算法 协同过滤 相似性 Recommendation algorithm, Collaborative filtering, Similarity
  • 相关文献

参考文献13

  • 1Balabanovic M,Shoham Y.Fab:Content-Based,Collaborative Recommendation.Communications of ACM,1997,40(3):66-72
  • 2Mooney R J,Roy L.Content-Based Book Recommending Using Learning for Text Categorization.In:Proceeding of ACM SIGIR'99 Workshop Recommender Systems:Algorithms and Evaluation,1999
  • 3Pazzani M,Billsus D.Learning and Revising User Profiles:The Identification of Interesting Web Sites.Machine Learning,1997,27:313-331
  • 4Goldberg D,Nichols D,O ki BM,et al.Using collaborative filtering to weave an information Tapestry.Communications of the ACM,1992,35(12):61-70
  • 5Resnick P,Iacovou N,Suchak M,et al.GroupLens:An open architecture for collaborative filtering of Netnews.In:Proceeding of ACM 1994 Conference on Computer Supported Cooperative Work,1994.175-186
  • 6Breese J S,Heckerman D,Kadie C.Empirical Analysis of Predictive Algorithms for Collaborative Filtering.In:Fourteen Conference on Uncertainty in Artificial Intelligence,1998
  • 7Sarwar B,Karypis G,Konstan J,et al.Item-based collaborative filtering recommendation algorithm.In:Proceedings of the 10th International World Wide Web Conference,2001.285-295
  • 8Ha V,Haddawy P.Toward Case-Based Preference Elicitation:Similarity Measures on Preference Structures.In:Proceedings of 14th Conference on Uncertainty in Artificial Intelligence,1998.193-201
  • 9Shardanand U,Maes P.Social Information Filtering:Algorithms for Automating "Word of Mouth".In:Proceedings of ACM Conference on Human Factors in computing Systems,1995.210-217
  • 10Vozalis E V,Margaritis K G.Recommender systems:An experimental comparison of two filtering algorithms.http://macedonia.uom.gr/-mans/papiria/voz-epy9.pdf.(2006-07-06)

同被引文献9

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部