期刊文献+

发展包含的可控性 被引量:1

Controllability of evolution inclusion
下载PDF
导出
摘要 可控性理论是微分包含的基本内容之一.利用凝聚映射的不动点定理给出了一类发展包含的可控性的充分条件,处理问题的方法是基于解的积分表示,将所讨论的问题转化为集值积分算子的不动点问题.在多值函数F(t,x)取有界闭凸值,关于时间变量t可测,关于状态变量x上半连续时,证明了系统的可控性. Controllability is a basic content of differential inclusions. By applying a fixed pointed theorem for condesing maps, the sufficient conditions of controllability are given. This method is based on integral expression of solutions, the problem can be converted into fixed point problem of single -valued integral operators. When F(t,x) takes bounded, closed, convex valued, and is measurable about time variable t, is upper semi - continuous about state variable x, the authors prove the controllability of the system.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2007年第4期467-470,共4页 Journal of Natural Science of Heilongjiang University
基金 黑龙江省教育厅科研资助项目(11511136)
关键词 发展包含 MILD解 可控性 不动点 controllability evolution inclusion mild solution fixed point
  • 相关文献

参考文献7

  • 1Hu S,Papageorgiou N S.Handbook of muhivalued analysis(Ⅰ):Theory[M].Dordrecht:Kluwer,1997.
  • 2Lasota A,Optial Z.An application of the Kukutani-Ky-Fan theorem in the theory of ordinary differential aquations[J].Bull Acad Polon Sci,1965,13:781-786.
  • 3Martelli M.A Rothe type theorem for noneompact acyclic-valued map[J].Boll Un Mat Ital,1975(4):70-76.
  • 4Chang Y K,Li W T,Nieto J J.Controllability of evolution differential inclusions in Banach spaces[J].Nonlinear Anal,2007,67:623-632.
  • 5Balachandran K,Manimedolai P.Controllability of nonlinear abstract neutral evolution integrodifferential systems[J].Nonlinear Funct Anal Appl,2002(7):85-100.
  • 6Li G,Xue X.Controllability of evolution inclusions with nonlocal conditions[J].Appl Math Comput,2003,141:375-384.
  • 7Guo M,Xue X,Li R.Contollability of Impulsive Evolutions with Nonlocal Conditions[J].J Optim Theory Appl,2004,120:355-374.

同被引文献10

  • 1CARDINALI T, RUBBIONI P. On the existence of mild solutions of semilinear evolution differential inclusions[ J]. Journal of Mathematical Analy- sis and Applications, 2005, 308(2): 620-635.
  • 2JI Shao-chun, LI Gang. Existence results for impulsive differential inclusions with nonlocal conditions[ J]. Computers and Mathematics with Appli- cations, 2011, 62(4) : 1908 - 1915.
  • 3LI Wen-sheng, CHANG Yong-kui, NIETO J J. Solvability of impulsive neutral evolution differential inclusions with state-dependent delay [ J ]. Mathematical and Computer Modelling, 2009, 49(9) : 1920 -1927.
  • 4BENCHOHRA M, HENDERSON J, NTOUYAS S K. Impulsive differential equations and inclusions, voh 2 [ M ]. New York: Hindawi Publishing Corporation, 2006.
  • 5PAZY A. Semigroups of linear operators and applications to partial differential equations [ M ]. New York: Springer-Verlag, 1983.
  • 6BANAS J, GOEBEL K. Measure of noncompactness in Banach spaces[ M]. New York: Marcel Dekker, 1980.
  • 7KAMENSKII M, OBUKHOVSKII V, ZECCA P. Condensing muhivalued maps and semilinear differential inclusions in Banach spaces[M]. Ber- lin: Walter de Gruyte, 2001.
  • 8DEIMLING K. Nonlinear functional analysis [ M ]. Berlin : Springer-Verlag, 1985.
  • 9COUCHOURON J F, KAMENSKII M. An abstract topological point of view and a general averaging principle in the theory of differential inclu- sions [ J ]. Nonlinear Analysis : Theory, Methods & Applications, 2000, 42 ( 6 ) : 1101 - 1129.
  • 10嵇绍春,李刚.非局部条件下脉冲微分方程的适度解[J].扬州大学学报(自然科学版),2010,13(1):13-16. 被引量:5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部