期刊文献+

一类非线性延迟积分方程概周期型解的存在性 被引量:2

Existence of positive almost periodic type solutions for some nonlinear delay integral equations
下载PDF
导出
摘要 1976年,Cook和Kaplan关于人口传染病问题建立了一个数学模型,即一类延迟积分方程,随后一些类似的模型被建立了起来.首先简要介绍了几个延迟积分方程的概周期型解的研究概况,以及概周期函数、渐近概周期和伪概周期函数的定义,最后利用关于Hilbert投影度量不动点理论,讨论了一类延迟积分方程的正的概周期型解的存在性. Cook and Kaplan gave a mathematical model for epidemics and population in 1976, that is some delay integral equation. Consequently, some similar models are given. The cases of investigation for these equations are briefly introduced; the definitions of almost periodic function, asymptotically almost periodic function and pseudo almost periodic function are given. Finally, the existence of positive almost periodic type solutions for some nonlinear delay integral equations is discussed by applying fixed points theorem on Hilbert project metric.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2007年第4期493-497,共5页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金(天元基金)资助项目(10626014) 黑龙江省教育厅科学技术研究项目(10051057)
关键词 延迟积分方程 概周期型解 不动点 delay integral equation almost periodic type solution fixed point
  • 相关文献

参考文献6

  • 1Cook K,Kaplan J.A periodicity threshold theorem for epidemics and population growth[J].Math Biosci,1976,31:87-104.
  • 2Ezzinbi K,Hachimi M A.Existence of positive almost periodic solutions of functional equations via Hilbert,s projective metric[J].Nonlinear Analysis T M A,1996,26(6):1169-1176.
  • 3姚慧丽,张传义.一类非线性延迟积分方程正的概周期型解的存在性[J].数学学报(中文版),2004,47(2):279-284. 被引量:6
  • 4Thompson A C.On certain contraction mappings in a partially ordered vector space[J].Proc Amer Math Soc,1963,14:438-443.
  • 5Deinding K.Nonlinear Analysis[M].Berlin:Springer,1985.
  • 6Corduneanu C.Almost periodic functions[M].1st ed.New York:Chelsea,1968;2nd ed.New York:Chelsea,1989.

二级参考文献8

  • 1Cook K., Kaplan J., A periodicity threshold theorem for epidemics and population growth, Math. Biosci.,1976. 31: 87-104.
  • 2Ezzinbi K., Hachimi M. A., Existence of positive almost periodic solutions of functional equations via Hilbert's projective metric, Nonlinear Analysis T. M. A., 1996, 26(6): 1169-1176.
  • 3Ait Dads E., Ezzinbi K., Existence of positive pseudo almost periodic solutions for some nonlinear delay integral equations arising in epilemic problems, J. Cybernet Number, 1994, 6: 133-144.
  • 4Thompson A. C., On certain contraction mappings in a partially ordered vector space, Proc. Amer. Math.Soc., 1963, 14: 438-443.
  • 5Deimling K., Nonlinear analysis, Berlin: Springer, 1985.
  • 6Zhang C., Ergodicity and asymptotically almost periodic solutions of some differential equations, International J. Math. & Math. Sci., to appear.
  • 7Corduneanu C., Almost periodic functions, Chelsea, New York, 1st. ed., 1968, 2 nd. ed., Interscience Publishers, 1989.
  • 8Zhang C., Pseudo almost periodic solutions of some differential equations, J. Math. Anal. Appl., 1994, 18:162-172.

共引文献5

同被引文献9

  • 1Brenner H.Collocation Methods for Volterra Integral and Related Functional Differential Equations[M].Cambridge:Cambridge University Press,2004.
  • 2Corduneanu C.Integral Equations and Applications[M].Cambridge:Cambridge University Press,1991.
  • 3Atkinson K,Flnres J.The Discrete Collocation Method for Nonlinear Integral Equations[J].IMA J Numer Anal,1993,13(2):195-213.
  • 4Elnagar G N,Kazemi M.Chebyshev Spectral Solution of Nonlinear Voherra-Hammerstein Integral Equations[J].J Comput Appl Math,1996,76(1/2):147-158.
  • 5Diogo T,Lima P.Super Convergence of Collocation Methods for a Class of Weakly Singular Volterra Integral Equations[J].J Comput Appl Math,2008,218:307-316.
  • 6Diogo T.Collocation and Iterated Collocation Methods for a Class of Weakly Singular Voherra Integral Equations[J].J Comput Appl Math,2009,229:363-372.
  • 7黄明游,冯果忱.数值分析[M].北京:高等教育出版社,2007.
  • 8李云晖,崔明根,姜秀英.尺度函数与积分方程特征值问题[J].黑龙江大学自然科学学报,2008,25(4):519-522. 被引量:1
  • 9袁荣,洪佳林.Existence of almost periodic solutions of neutral differential equations with piecewise constant argument[J].Science China Mathematics,1996,39(11):1164-1177. 被引量:18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部