期刊文献+

一类抽象锥不等式的全局误差界的几个等价条件

Several equivalent conditions of global error bounds for a kind of abstract conic inequalities
下载PDF
导出
摘要 针对一类有约束的抽象锥不等式,研究其可行解集的全局误差界.利用集合的法锥、切锥以及凸函数的次微分和方向导数给出了全局误差界的几个等价条件. Global error bounds for the solution set of an abstract conic inequality are studied. Several equivalent characterizations for global error bounds of this inequality are obtained by using the normal cone and the tangent cone of the feasible solution set and Gateaux derivative of operators.
作者 于海姝 宋文
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2007年第4期539-542,共4页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(10471032) 教育部优秀青年教师资助计划项目
关键词 全局误差界 抽象锥不等式 次微分 GATEAUX可微 global error bounds abstract conic inequality subdifferential Gateaux differentiable
  • 相关文献

参考文献7

  • 1Bonnans J F,Shapiro A,Perturbation analysis of optimization problems,Springer Series in Operations Research[M].New York:Springer-Verlag,2000.
  • 2Burke J V,Fen-is M C.On the Clarke subdifferential of the distance funtion of a closed set[J].J Math Anal Appl,1992,166:512-534.
  • 3Burke J V,Deng S.Weak sharp minima revised.Part Ⅰ:basic theory[J].Control and Cybernetics,2002,31:439-470.
  • 4Ng K F,Yang W H.Error bounds for abstract linear inequality systems[J].SIAM J Optim,2002,13:24-43.
  • 5Deng S E.Global error bounds for convex inequality systems in Banach space[J].SIAM J Control Optim,1998,36:1240-1249.
  • 6LI W.Abadie's constraint qualification,metric regularity,and error bounds for differentiable convex inequality[J].SIAM J Optim,1997(7):966-978.
  • 7ZHENG X Y,NG K F.Perturbation analysis of error bounds for systems of conic linear inequalities in Banach spaces[J].SIAM J Optim,2005,15:1026-1041.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部