期刊文献+

用于过程故障诊断的自适应kernel学习网络分类器 被引量:2

Adaptive kernel learning classifier with application to process fault diagnosis
下载PDF
导出
摘要 提出一种统一的最小二乘kernel学习框架,将自适应kernel学习(AKL)网络辨识器推广为分类器,用于化工过程的故障诊断。推导了AKL分类器在向后缩减和向前增长两种情况下的递推算法,实现了对记忆样本长度的控制。该分类器无需利用历史故障数据,即可进行在线学习并建立过程诊断模型。通过对Tennessee Eastman(TE)过程的5种典型故障的诊断分析,验证了该方法的有效性。 An adaptive kernel learning (AKL) network classifier, as a natural extension of AKL identifier, was proposed based on the unified least-square kernel learning (ULK) framework. The backward decreasing and forward increasing algorithms of AKL classifier were derived, both in recursive forms. The memory length of the classifier was thus under control so as to quickly adapt to the change of process dynamics. The AKL classifier did not require the support from the historical fault database and can learn from the beginning of the process operation. Numerical simulations for diagnosis of Tennessee Eastman (TE) process showed that the proposed ULK framework and the resulting AKL classifier were valid, and satisfying diagnosis performance was observed.
作者 王海清 蒋宁
出处 《化工学报》 EI CAS CSCD 北大核心 2007年第9期2276-2280,共5页 CIESC Journal
基金 国家自然科学基金项目(20576116) 教育部留学回国人员科研启动基金资助项目~~
关键词 过程诊断 模式分类器 统计学习理论 process diagnosis pattern classifier statistical learning theory
  • 相关文献

参考文献10

  • 1Venkatasubramanian V,Chan K.A neural network methodology for process fault diagnosis.AIChE Journal,1989,35:1993-2002
  • 2Lee G,Han C H,Yoon E S.Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamic PLS.Ind.Eng.Chem.Res.,2004,43:8037-8048
  • 3Wang H Q,Song Z H,Li P.Fault detection behavior and performance analysis of PCA-based process monitoring methods.Ind.Eng.Chem.Res.,2002,41:2455-2464
  • 4Vapnik V N.The Nature of Statistical Learning Theory.Berlin:Springer Verlag,1995
  • 5Schlkopf B,Smola A J.Learning with Kernels:Support Vector Machines,Regularization,Optimization,and Beyond.Cambridge:MIT Press,2002
  • 6Suykens J K,Gestel T V,Brabanter J D,et al.Least Squares Support Vector Machines.Singapore:World Scientific,2002
  • 7Wang H Q,Song Z H,Li P,Ding S X.AKL networks for industrial analyzer modeling and fault detection//The IFAC Symposium on Fault Detection,Supervision and Safety of Technical Processes.Amsterdam:Elsevier,2006:1081-1086
  • 8Allwein E L,Schapire R E,Singer Y.Reducing multiclass to binary:a unifying approach for margin classifiers//Proceedings of the 17th International Conference on Machine Learning.San Francisco:Morgan Kaufmann,2000:9-16
  • 9Golub G H,Van Loan C F.Matrix Computations.3rd ed.Baltimore:The John Hopkins University Press,1996
  • 10Downs J J,Vogel E F.A plant-wide industrial process control problem.Comput.Chem.Engng.,1993,17(3):245-255

同被引文献37

  • 1蒋丽英,王树青.基于MPCA-MDPLS的间歇过程的故障诊断[J].化工学报,2005,56(3):482-486. 被引量:8
  • 2王华忠,俞金寿.混合核函数PLS建模方法及在软测量中的应用[J].计算机与应用化学,2007,24(2):239-242. 被引量:17
  • 3Guyon Jason Weston, Stephen Barnhill, Vladimir Vaprik. Gene selection for cancer classification using support vector machines. Machine Learning, 2002, 46 ( 1/2/3 ) : 389- 422.
  • 4Estevez P A, Tesmer M, Perez C A, Zurada J M. Normalized mutual information feature selection. IEEE Transactions on Neural Networks, 2009, 20 ( 2 ) : 189-201.
  • 5Torkkola K. Feature extraction by non parametric mutual information maximization. Journal of Machine Learning Research, 2003, 3:1415-1438.
  • 6Kwak N, Choi C H. Input feature selection by mutual information based on Parzen window. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (12): 1667-1671.
  • 7Huang D, Tommy W S Chow. Effective feature selection scheme using mutual information. Neurocornputing, 2005, 63 (1): 325-343.
  • 8Battiti R. Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks, 1994, 5 (4): 537-550.
  • 9Kwak N, Choi C H. Input feature selection for classification problems. IEEE Transactions on Neural Networks, 2002, 13 (1): 143- 159.
  • 10Yang H, Moody J. Data visualization and feature selection: new algorithms for nongaussian data//Solla S A, Leen T K, Muller K R. Advances in Neural Information Processing Systems ( vol. 12 ). Cambridge: MIT Press, 2000:687-693.

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部