期刊文献+

金融时间序列变点探测的小波模极大值线方法 被引量:9

Outlier's Detection of Financial Time Series Based on Wavelet Modulus Maxima Line Method
下载PDF
导出
摘要 研究小波变换方法在金融时序分析中模型变点探测的应用,对金融时间序列采用连续小波变换,通过分析小波变换模极大值线对应的时间序列样本点的小波系数特点,提出了金融时间序列变点探测的小波模极大值线方法,并对广义自回归条件异方差均值模型(GARCH-M模型)进行了仿真计算,其结果验证了此方法的实用性和有效性。该方法更能准确定位金融资产收益率波动所发生的具体时刻,有利于金融资产价格异常时点的正确识别与统计建模分析和资产收益率波动的预测。 This paper investigates the application of wavelet transform methods on outlier detection of financial time series. Through Continuous Wavelet Transform and the analysis of modulus maxima line corresponding sample point, the authors put forward an approach of Outlier' s detection of Financial Time Series Based on Wavelet Modulus Maxima Line Algorithms. By digital simulation of GARCH-M model, they prove that the method has much value in practical. The method can be more accurate to identify the concrete outliers of financial assets return what motion take place, and have an important meaning to estimate financial property rate of return as well.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第8期140-144,共5页 Journal of Chongqing University
基金 重庆市教委科研项目(KJ051203)
关键词 小波变换 模极大值线 GARCH-M模型 变点探测 wavelet transforms modulus maxima Line GARCH-M model outlier's detection
  • 相关文献

参考文献6

  • 1KIM S,CHO S,LEE S.On the CUSUM test for parameter changes in GARCH (1,1) models[J].Commun in Statist,2000,29:445-462.
  • 2INCLAN C,TIAO G C.Use of cumulative sums of squares for retrospective detection of changes of variances[J].Amer Statist Assoc,1994,89:913-923.
  • 3李水银,吴纪桃.分形与小波[M].北京:科学出版社.2002.
  • 4MALLAT S,HANG W L.Singularity detection and processing with wavel et[J].IEEE Transon Information Theory,1992,38(22):617-643.
  • 5POPIVANOVI,MILLER R J.Similarity search over timeseries data using wavelets[C]//Proceedings of the 18th International Conference on Data Engineering.Washington,DC:IEEE Computer Society,2002:212-221.
  • 6余璟明,何希琼,程冬爱.基于离散小波变换的时间序列数据挖掘[J].计算机应用,2005,25(3):652-653. 被引量:3

二级参考文献5

  • 1AGGARWAL CC, HINNEBURG A, KEIM DA. On the Surprising Behavior of Distance Metrics in High Dimensional Space[A]. Proceedings of the 8th International Conference on Database Theory[C]. London,UK:Springer-Verlag,2001.420-434.
  • 2GEURTS P. Pattern extraction for time series classification[A]. Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery[C]. Freiburg,Germany:Springer-Verlag, 2001.115-127.
  • 3VLACHOS M, LIN J, KEOGH E, et al. A Wavelet-Based Anytime Algorithm for K-Means Clustering of Time Series[A]. the 3 SIAM International Conference on Data Mining[C]. San Francisco, CA, 2003.
  • 4WU Y-L, AGRAWAL D, ABBADI AE. A comparison of DFT and DWT based similarity search in time-series databases[A]. Proceedings of the 9th International Conference on Information and Knowledge Management[C]. McLean,VA:ACM Press, 2000. 488-495.
  • 5POPIVANOV I, MILLER RJ. Similarity Search Over Time-seriesData Using Wavelets[A]. Proceedings of the 18th International Conference on Data Engineering[C]. Washington, DC:IEEE Computer Society, 2002.212-221.

共引文献7

同被引文献153

引证文献9

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部