期刊文献+

基于IMM的光电经纬仪机动目标跟踪优化算法 被引量:4

An Optimization Algorithm for Improving Markedly the Tracking of a Maneuvering Target
下载PDF
导出
摘要 提出一种简化交互多模型算法(IMM)与去偏转换测量卡尔曼滤波算法(CMKF-D)相结合的机动目标跟踪优化算法。该算法通过机动检测判别函数D(k)与门限T的关系,自适应调整CMKF-D的部分参数,解决了常规交互多模算法需要大量先验知识的问题,同时克服了扩展卡尔曼滤波(EKF)对非线性模型线性化所引入的误差。仿真实验验证了该算法的有效性。利用该算法可显著改善基于非线性测量方程下光电经纬仪对机动目标的跟踪性能,其位置跟踪误差小于1.5m,速度误差小于1.5 m/s,加速度误差小于0.7 m/s2。 Existing algorithms using Interaction Multiple Model(IMM) and Extended Kalman Filter(EKF) for tracking maneuvering targets suffer,in our opinion,from two shortcomings:(1) traditional IMM algorithm requires a large amount of a priori knowledge,(2) error is unavoidable when a linear model is substituted for a non-linear model through EKF.Our efficient algorithm can suppress to a considerable extent these two shortcomings.In the full paper,we explain our algorithm in some detail;in this abstract,we just add some pertinent remarks to listing the three topics of explanation.The first topic is: Debiased Converted Measurements Kalman Filter(CMKF-D).The second topic is: simplified IMM algorithm. In these two topics,we discuss how our algorithm adaptively adjusts part of the CMKF-D parameters according to the relations between maneuvering discriminant function D(k) and threshold τ,summarized in Eqs.(15) and(16) in the full paper.At the end of the paper,we simulate our algorithm using a photoelectrical theodolite to track a maneuvering target.The simulation results,given in 6 figures in the full paper,show preliminarily that our algorithm can significantly improve the tracking of a maneuvering target.The position-tracking error is less than 1.5m,the velocity-tracking error is less than 1.5m/s and the acceleration-tracking error is less than 0.7 m/s^2.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2007年第4期561-565,共5页 Journal of Northwestern Polytechnical University
关键词 机动目标跟踪 简化交互多模算法 去偏转换测量卡尔曼滤波 光电经纬仪 maneuvering target,simplified interaction multiple model(IMM) algorithm,debiased converted measurements Kalman filter(CMKF-D),photoelectrical theodolite
  • 相关文献

参考文献8

  • 1Bar-Shalom Y,Li X R.Multitarget-Multisensor Tracking:Principles and Techniques.Storrs,CT:YBS Publishing,1995
  • 2Park Seong-Taek,Lee Jang Gyu.Improved Kalman Filter Design for Three-Dimensional Radar Measurements.IEEE Transactions on Aerospace and Electronic Systems,2001,37(2):727-739
  • 3Robb T K,Farooq M.Application of Neural Networks to Multi-Target Tracking.SPIE-4052,2000,14-24
  • 4Bedworth M,O'Brien J.The Omnibus Model:A New Model of Data Fusion.IEEE Transactions on Aerospace and Electronic Systems,2000,15(4):30-36
  • 5Bar-Shalom Y.A Tutorial on Multitarget-Multisensor Tracking and Fusion.IEEE National Radar Conference.Syracuse,NY,1997
  • 6Deb S,Yeddanapudi M,Pattipati K R.A Generalized S-D Assignment Algorithm for Multisensor-Multitarget State Estimation.IEEE Transon AES,1997,33(2):523-536
  • 7杨春玲,倪晋麟,刘国岁,郑全战.转换坐标卡尔曼滤波器的雷达目标跟踪[J].电子学报,1999,27(3):121-123. 被引量:49
  • 8侯宏录,周德云,王伟,国蓉.模糊PID控制在光电跟踪控制系统中的应用[J].光电工程,2006,33(5):12-16. 被引量:13

二级参考文献5

共引文献60

同被引文献27

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部