期刊文献+

一种高效的基于局部扭曲立方体的悲观诊断算法 被引量:3

An Efficient Pessimistic Diagnosis Algorithm on Locally Twisted Cube
下载PDF
导出
摘要 悲观诊断与精确诊断相比,可以提高系统的自诊断能力。局部扭曲立方体是超立方体的一种变体,具有可并行处理的某些性质。在PMC模型下,研究了局部扭曲立方体的诊断问题,提出了一个O(Nlog_2N)的悲观诊断算法,N是处理器总数。经典的YML算法所需时间为O(N^(2.5)),因此,该算法在时间复杂度方面是高效的。 In comparison with precise diagnosis, pessimistic diagnosis can enhance the self-diagnosing capability of a system. Locally twisted cube is one of the hypercube variants, which possesses some features desirable for parallel processing. This paper addresses the fault diagnosis of locally twisted cube under the PMC model and propose an O(N log2 N) algorithm for pessimistic diagnosis of locally twisted cube, where N is the total number of the processors. In comparison, the classical YML algorithm takes O (N^25) time to achieve the same goal. In terms of time overload, the presented algorithm is efficient.
出处 《微电子学与计算机》 CSCD 北大核心 2007年第10期171-173,共3页 Microelectronics & Computer
基金 教育部新世纪优秀人才计划(NCET-05-0759) 教育部博士点基金(20050611001)
关键词 系统级故障诊断 悲观诊断算法 局部扭曲立方体 PMC模型 system-level diagnosis pessimistic diagnosis algorithm locally twisted cube PMC model
  • 相关文献

参考文献9

  • 1Preparata F P.On the connection assignment problem of diagnosable systems[J].IEEE Trans.Comput.,1967,16(12):848-854
  • 2Friedman A D.A new measure of digital system diagnosis[J].Proc.Fifth Int'l Symp.Fault-Tolerant Computing,1975:167-170
  • 3Yang C L On fault isohition and identification in tl/t1-di-agnosable systems[J].IEEE Trans.CompuL.1986,C-35(7):639-643
  • 4Yan X,Evans D Y,Megson G M.The locally twisted cubes[J].International Journal of Computer Mathematics,2005,82(4):401-413
  • 5Ma M L,Xu J M.Panconnectivity of locally twisted cubes[J].Applied Mathematics Letters,2006:673-677
  • 6Yang X.Locally twisted cubes are 4-poncyclic[J].Applied Mathematics Letters,2004,17(8):919-925
  • 7Yang X,Cao J,Megson G M,et al.Minimum neighborhood in a generaJised cube[J].Information Processing Letters,2006,97(3):88-93
  • 8Esfahanian A H.Generalized measures of fault tolerance with application to n-cube networks[J].IEEE Trans.Comput,1989,38(11):1586-1591
  • 9Chang G Y,Chang G J,Chen G H.Diagnosabilities of regu]ar networks[J].IEEE Transactions on Parallel and Distributed Systems,2005,16(4):314-323

同被引文献33

  • 1常青彦,马美杰,徐俊明.局部纽立方体网络的容错泛圈性[J].中国科学技术大学学报,2006,36(6):607-610. 被引量:2
  • 2Somani A K. System level diagnosis: a review[R]. Dependable Computing Laboratory, USA: Iowa State University, 1997.
  • 3Preparata F P, Metze G, Chien R. On the connection assignment problem of diagnosable systems[J ]. IEEE Transactions on Computers, 1967,16(12) : 848 - 854.
  • 4Maeng J, Malek M. A comparison cotmeetion assignment for self- diagnosis of multiprocessor systems [ C]//Proceedings of the 11th International Symposium on Fault- Tolerant Computing. Spain, 1981 : 173 - 175.
  • 5Chang G Y, Chang G J, Chen G H. Diagnosabilities of regular networks [ J ]. IEEE Transactions on Parallel and Distributed Systems, 2005, 16(4) : 314 - 323.
  • 6Sengupta A, Danbura A T. On self - diagnosable multipro-cessor systems: diagnosis by the comparison approach[J ]. IEEE Transactions on Computers, 1992,41 ( 11 ) : 1386 - 1396.
  • 7Bhuyan L N,Agrawal D P.Generalized hypercube and hyper bus structures for a computer network[J].IEEE Transactions on Computers,1984,33(4):323-333.
  • 8Leighton F T.Introduction to parallel algorithms and architectures:arrays,trees,hyper cubes[M].Morgan Kauffman Publishers,1992.
  • 9Saad Y,Shultz H G.Topological properties of hypercube[J].IEEE Transactions on Computers,1988,37:867-872.
  • 10Kavianpour A,Kim K H.Diagnosabilites of hypercube under the pessimistic one-step diagnosis strategy[J].IEEE Transactions on Computers,1991,40(2):232-237.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部