摘要
■_n∈N_+,著名的F.Smarandache函数S(n)定义为最小的正整数m使得n/m!,即就是S(n)=min(m:n|m!,m∈N}.利用初等方法研究一类包含S(n)与Dirichlet除数函数d(n)的混合均值问题,并给出一个较强的渐近公式.
For any positive integer n,the famous F. Smarandache function S(n) defined as the smallest positive integer m such that n|m !. That is , S(n) = min{m, n | m! ,m E N). Using the elementary methods,a hybrid mean value problem involving the F. Smarandache function and the Dirichlet divisor function is studied,and a sharper asymptotic formula is given for it.
出处
《纺织高校基础科学学报》
CAS
2007年第3期234-236,共3页
Basic Sciences Journal of Textile Universities
基金
国家自然科学基金(10671155)