期刊文献+

关于F.Smarandache函数与除数函数的一个混合均值 被引量:6

On a hybrid mean value of the F.Smarandache function and the divisor function
下载PDF
导出
摘要 ■_n∈N_+,著名的F.Smarandache函数S(n)定义为最小的正整数m使得n/m!,即就是S(n)=min(m:n|m!,m∈N}.利用初等方法研究一类包含S(n)与Dirichlet除数函数d(n)的混合均值问题,并给出一个较强的渐近公式. For any positive integer n,the famous F. Smarandache function S(n) defined as the smallest positive integer m such that n|m !. That is , S(n) = min{m, n | m! ,m E N). Using the elementary methods,a hybrid mean value problem involving the F. Smarandache function and the Dirichlet divisor function is studied,and a sharper asymptotic formula is given for it.
作者 吕忠田
出处 《纺织高校基础科学学报》 CAS 2007年第3期234-236,共3页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金(10671155)
关键词 F.SMARANDACHE函数 除数函数 混合均值 渐近公式 F. Smarandache function Dirichlet divisor function hybrid mean value asymptotic formula
  • 相关文献

参考文献9

  • 1SMARANDACH E F. Only problems, not solutions[ M]. Chicago: Xiquan Publishing House, 1993.
  • 2FARRIS Mark, MITCHELL Patrick. Bounding the Smarandache function[J]. Smarandache Nations Journal, 2002,13: 37-42.
  • 3WANG Yongxing. On the Smarandache function[C]//ZHANG Wenpeng, LI Junzhuang, Liu Duansen. Research on Smarandache Problem In Number Theory. Phoenix: Hexis,2005:103-106.
  • 4徐哲峰.Smarandache函数的值分布性质[J].数学学报(中文版),2006,49(5):1009-1012. 被引量:88
  • 5LIU Yarning. On the solutions of an equation involving the Smarandaehe funetion[J]. Scientia Magna, 2006,2(1):76- 79.
  • 6JOZSEF Sandor. On certain inequalities involving the Smarandache function[J]. Scientia Magna, 2006,2(3): 78-80.
  • 7FU Jing. An equation involving the Smarandache function[J]. Scientia Magna,2006,2(4) :83-86.
  • 8潘承洞 潘承彪.初等数论[M].北京:北京大学出版社,2003..
  • 9TOM M Apostol. Introduction to analytic number theory[M]. New York: Springer-Verlag, 1976.

二级参考文献3

  • 1Erdos P, Problem 6674, Amer. Math. Monthly, Vol. 98, 1991, 965.
  • 2Tabirca S, About S-multiplicative functions, Octogon, 1999, 7: 169-170.
  • 3Apstol T. M, Introduction to analytic number theory, New York: Springer-Verlag, 1976, 77.

共引文献136

同被引文献37

  • 1刘燕妮,高鹏.一个新的数论函数及其均值[J].纺织高校基础科学学报,2005,18(2):123-125. 被引量:1
  • 2冀永强.数论函数及其方程[J].纺织高校基础科学学报,2006,19(1):5-6. 被引量:7
  • 3徐哲峰.Smarandache函数的值分布性质[J].数学学报(中文版),2006,49(5):1009-1012. 被引量:88
  • 4SMARANDACHE F. Only problems, not solutions [ M ]. Chicago: Xiquan Publishing House, 1993.
  • 5LIU Yaming. On the solutions of an equation involving the Smarandache function[ J]. Scientia Magna, 2006,2( 1 ) :76-79.
  • 6JOZSEF Sandor. On certain inequalities involving the Smarandache function[ J ]. Scientia Magna,2006,2 (3) :78-80.
  • 7LE Mohua. A lower bound for S(2^p-1 (2^p - 1) ) [J]. Smarandache Notions Journal,2001,12( 1 ) :217-218.
  • 8SMARANDACHE F.Only problem,not solution[M].Chicago:Xiquan Publishing House,1993.
  • 9KENICHIRO Kashihara.Comments and topics on Smarandache notions and problems[M].Phoenix:Erhus University Press,1996.
  • 10刘燕妮,李玲,刘宝利.Smarandache未解决的问题及其新进展[M].Phoenix:High American Press,2008.

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部