期刊文献+

求解随机微分方程半隐无导数法的稳定性

Mean square stability and exponential stability of the semi-implicit derivative-free methods for solving stochastic differential equations
下载PDF
导出
摘要 数值方法的有效性对于求解随机微分方程是很重要的,稳定性就是衡量其合理性的标准之一.讨论了在噪声为乘性噪声的条件下,半隐无导数法用于求解标量自治随机微分方程的均方稳定性和指数稳定性,并给出了半隐无导数法用于求解标量自治随机微分方程的均方稳定性和指数稳定性的条件,同时指出半隐无导数法用于求解标量自治随机微分方程的均方稳定性和指数稳定性是等价的. The validity of numerical method to be solved stochastic differential equation is very important, and the stability is one of the criteria used to judge its rationality. When noise is multiplicative noise, semi-implicit derivative-free method is used to solve scalar autonomous stochastic differential equations is explored and their mean-square stability and exponential stability are found in this paper. The condition of mean-square stability and exponential stability is put forward under which semi-implicit derivative-free method be used to solve scalar autonomous stochastic differential equations, when semi-implicit derive- ative -free method is used to solve scalar autonomous stochastic differential equations, at the same time, it is pointed out that mean-square stability is equivalent to exponential stability.
出处 《纺织高校基础科学学报》 CAS 2007年第3期246-248,共3页 Basic Sciences Journal of Textile Universities
关键词 半隐无导数 随机微分方程 均方稳定 指数稳定 semi-implicit derivative-free methods stochastic differential equation mean-square stability exponential stability
  • 相关文献

参考文献5

二级参考文献10

  • 1朱霞,李建国,李宏智,姜珊珊.随机微分方程Milstein方法的稳定性[J].华中科技大学学报(自然科学版),2003,31(3):111-113. 被引量:12
  • 2龚光鲁,随机微分方程引论,1987年
  • 3匿名著者,随机微分方程理论及其应用(中译本),1986年
  • 4Saito Y, Mitsui T. Stability analysis of numerical schemes for stochastic differential equations. SIAM. J.Numer. Anal., 1996, 33(6): 2 254~2267
  • 5Burrage P M. Runge-kutta methods for stochastic differential equations: [Ph. D Thesis]. Department of Mathematics, the University of Queensland, Australia,1998.
  • 6Kleoden P E, Platen E, Schurz H. Numerical solution of stochastic differential equations. Berlin: Spring Verlag, 1992.
  • 7Desmond J. Higham. Mean-square and asymptotic stability of the stochastic theta method. SIAM. J. Numer.Anal., 2000, 38(3): 753~769
  • 8Rumelin W. Numerical treatment of stochastic differential equations. SIAM. J. Numer. Anal., 1982,19(3): 604~613
  • 9Saito Y,Mitsui T.Stability analysis of numerical schemes for stochastic differential equations[J].SIAM J Numer Anal,1996,33(6):2 254-2 267.
  • 10Higham D J.Mean-square and asymptotic stability of the stochastic theta method[J].SIAM J Numer Anal,2000,38(3):753-769.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部