期刊文献+

一种基于分带谱熵和谱能量的语音端点检测算法 被引量:12

A Speech Endpoint Detection Algorithm Based on the Band-partitioning Spectral Entropy and Spectral Energy
下载PDF
导出
摘要 语音端点检测的精确度直接影响语音识别的准确度.在噪声环境下,语音端点检测很困难.信噪比下降,语音端点检测的正确率也随之下降,同时,噪声类型的变化影响端点检测的正确率.为此,提出了一种改进的、适合在电话语音城市名识别系统中应用的端点检测算法,并结合分带谱熵和谱能量形成了一个新的特征参数集,利用该参数集进行端点检测,弥补了分别采用分带谱熵和谱能量进行端点检测的缺陷,提高了检测性能. The accuracy of speech recognition directly depends on accurate endpoint detection. Endpoint detection is a very difficult task in the noise environment. It will be degraded with the decrease of SNR and different noise affects the accuracy of speech recognition. As a result, this paper proposed an endpoint detection approach which is applicable to the telephone speech recognition system for city's name. The approach integrates band-partitioning spectral entropy and spectral energy to form a set of new feature parameters that can compensating the drawback of entropy and energy so that the performance of the detection is improved.
出处 《北京工业大学学报》 CAS CSCD 北大核心 2007年第9期920-924,共5页 Journal of Beijing University of Technology
基金 北京市教委科技发展计划顶目(KM200710005001) 北京工业大学研究生科技基金(ykj-2005-018) 北京市优秀人才培养资助项目(20061D0501500202).
关键词 语音处理 语音识别 谱分析 端点检测 分带谱熵 speech processing speech recognition spectrum analysis endpoint detection~ band-partitioningspectral entropy
  • 相关文献

参考文献8

  • 1HE Su-ning, YU Jue-bang. Robustness and co-operative multi-model man-machine communication applications[C]// ICCCSWP. Chengdu: Institute of Electrical and Electronics Engineers, 2002: 997-1002.
  • 2LAMEL L, LAWRENCE R R, ROSENBERG A E, et al. An improved endpoint detect for isolated word recognition[J ]. ITASSP, 1981, 29(4): 777-785.
  • 3HE Su-ning, YU Jue-bang. A novel chinese continuous speech endpoint detection method based on time domain features of the word structure[C] // ICCCSWP. Chengdu: Institute of Electrical and Electronics Engineers, 2002: 992-996.
  • 4YING G S, MITCELL C D, JAMIESON L H. Endpoint detection of isolated utterances based on a modified teager energy measurement[C]// ICASSP. Minneapolis, Minnesota, USA: Institute of Electrical and Electronics Engineers, 1993: 732- 735.
  • 5AINI H, SALINA A S, LIEW B F. Endpoint detection of speech signal using neural network[C]//TENCON 2000 Proceedings. Malaysia: Institute of Electrical and Electronics Engineers, 2000: 271-274.
  • 6SHEN J L, HUNG J W, LEE L S. Robust entropy-based endpoint detection for speech recognition in noisy environments[C] // Robert H Mannell. ICSLP. Sydney, Australia: [s.n. ], 1998: 232-235.
  • 7SHENG L S, YANG C H. A novel approach to robust speech endpoint detection in car environments[C] // ICASSP. Istanbul, Turkey: Institute of Electrical and Electronics Engineers, 2000: 1751-1754.
  • 8WU Bing-fei, WANG Kun-ching. Robust endpoint detection algorithm based on the adaptive band-partitioning spectral entropy in adverse environments[J]. IEEE Transactions on Speech and Audio Processing, 2005, 13(5): 762-775.

同被引文献78

引证文献12

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部