摘要
利用支持向量机方法对具有非线性及突发性特点的浮游植物密度进行了预测,同时与人工神经网络方法预测的结果进行了比较。结果表明,无论是拟和能力还是预测能力,支持向量机方法都明显优于人工神经网络方法,支持向量机方法比较适合于具有小样本、非线性特点的浮游植物密度预测研究。
The theory of support vector machine was used in the prediction of the phytoplankton's density with the characteristics of catastrophic and nonlinearity. Furthermore, the predicted result of support vector machine was compared with the result of artificial neutral network. The results showed that the regressed and predicted result of support vector machine was better than artificial neutral network. The theory of support vector machine was fitted for predicting the phytoplankton's density with few data and nonlinear.
出处
《海洋环境科学》
CAS
CSCD
北大核心
2007年第5期438-441,共4页
Marine Environmental Science
基金
国家自然科学基金资助项目(10472077)
关键词
支持向量机
浮游植物
预测
support vector machine
phytoplankton
prediction