期刊文献+

一种改进的Ford算法 被引量:2

An Improved Ford Method
下载PDF
导出
摘要 针对不含负回路网络中最短路Ford算法运算量大、直观性差的不足,引入表上作业法思想,从提高算法效率和增强计算直观性2个方面对其进行改进,并给出新的算法。新算法既能快速计算最短路权又能更直观地表现解题过程,是一种计算最短路的简捷方法。仿真结果和算例表明了新算法的有效性。 To avoid the disadvantage of computation complexity and observation in the process of finding the shortestpaths problem without minus loop by the Ford method,the idea of table- manipulation method is introduced and a new algorithm is presented,which is obtained by improving the efficiency of Ford method and enhancing observation for calculation. Since it can both calculate shortest- path weights more quickly and exhibit the process more directly,the new algorithm is a simple and direct method for calculating shortest paths with the simulation results and example proved the effectiveness of the new algorithm.
机构地区 榆林学院
出处 《现代电子技术》 2007年第20期111-113,117,共4页 Modern Electronics Technique
关键词 网络 最短路 表上作业法 算法 network shortest path table - manipulation method algorithm
  • 相关文献

参考文献7

二级参考文献12

  • 1Ziegelmann M.[D].Saarbrücken: Max-Planck-Institute,2001.
  • 2林景荣,系统工程理论与实践,1994年,14卷,8期
  • 3何进日,财物管理学,1994年
  • 4钱颂迪,运筹学(修订版),1990年
  • 5Kuby M, Zhongyi X, Xiaodong X. A minimax method for finding the k best differentiated path[J]. Geographical Analysis,1997, 29(4): 298-313.
  • 6Erkut E. The discrete p-dispersion problem [J]. European Journal of Operation Research, 1990, 46: 48-60.
  • 7Cherkassky B V, Goldberg A V, Radzik T. Shortest paths algorithms: theory and experimental evaluation[ J]. Mathematical Programming, 1996, 73: 129-174.
  • 8聂黎,俞集辉.一种新的优化算法——F-D 算法[J].重庆大学学报(自然科学版),1998,21(2):20-25. 被引量:4
  • 9俞集辉,孙渝江,聂黎.Floyd-Dijkstra算法在电缆敷设设计中的应用[J].重庆大学学报(自然科学版),1999,22(2):121-125. 被引量:4
  • 10吴晓红,蔡惠京.关于前馈神经网络的激活函数与认知能力[J].系统工程与电子技术,2000,22(5):69-72. 被引量:1

共引文献25

同被引文献24

  • 1郑红星,王传宇,吴云强.考虑碳排放的多式联运路径优化研究[J].中国水运(下半月),2019,19(12):67-69. 被引量:4
  • 2孙小军,刘三阳,焦建民.基于最小树权矩阵法的改进算法[J].计算机工程与设计,2005,26(12):3274-3275. 被引量:8
  • 3Festa P, Guerriero F, Laganet D, et al. Solving the shortest path tour problem [ J ]. European Journal of Operational Research, 2013,230 ( 3 ) : 464 -474.
  • 4Loachim I. A dual programming algorithm for the shortest path problem[ J]. Networks, 1998,31 (2) : 193-204.
  • 5Kuipers F, Mieghem P V, Korkmaz T, et al. An overview of constraint- based path selection algorithms for QOS routing [ J ]. IEEE Communication Magazine,2002,40 ( 12 ) :50-55.
  • 6Cormen T H, Leiserson C E, Rivest R L. Introduction to algo- rithms[ M]. 2nd ed. Cambrige,USA:MIT Press,2001.
  • 7Xin Lu, Camitz M. Finding the shortest paths by node combi- nation [ J ]. Applied Mathematics and Computation,2011,217(13) :6401-6408.
  • 8Kamihski M, Medvedev P, Milani M. Shortest paths between shortest paths [ J ]. Theoretical Computer Science, 2010,412 (39) :5205-5210.
  • 9朱耿青.A*算法实现及其应用[J].福建电脑,2008,24(2):74-75. 被引量:6
  • 10周灵.Waxman-Salama模型网络拓扑生成算法设计与实现[J].湖南理工学院学报(自然科学版),2008,21(2):40-42. 被引量:5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部