期刊文献+

条件自回归极差模型的对数正态拟极大似然估计 被引量:3

Lognormal quasi-maximum likelihood estimate of CARR
下载PDF
导出
摘要 为了解决在估计条件自回归极差模型(CARR)中的分布厚尾性问题,采用尾部呈幂函数衰减的对数正态分布估计CARR模型.在新息序列具有有限的12阶矩条件下,利用M估计的大样本性质和鞅的泛函中心极限定理,允许模型包含一个单位根的情况下,证明了对数正态分布下的拟极大似然估计是局部相合和渐近正态的,并且对数正态分布的厚尾性也较好地解决了异常值问题.相对于目前广泛采用的指数似然估计方法,提高了参数估计的效率. In order to circumvent the heavy-tailed problem in estimating the conditional autoregressive range model(CARR), the lognormal distribution is considered. Under conditions that the innovations have a finite 12th moment, which allows the model to have a unit root,we show that the quasi-maximum likelihood estimator which uses the lognormal distribution as the likelihood is locally consistent and asymptotically normal by the properties of the M-estimator and functional central limit theorem for martingale. Meanwhile the efficiency of the estimator can also be improved by the heavier tail of lognormal distribution than the exponential likelihood methods currently used in the literature.
作者 周杰 刘三阳
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2007年第5期828-834,共7页 Journal of Xidian University
基金 国家自然科学基金资助(60574075)
关键词 条件自回归极差模型 M估计 厚尾性 对数正态分布 CARR M-estimator heavy-tail lognormal distribution
  • 相关文献

参考文献10

  • 1周杰,刘三阳.条件自回归极差模型与波动率估计[J].数量经济技术经济研究,2006,23(9):141-149. 被引量:23
  • 2Engle R F, Russell J F. Autoregressive Conditional Duration:a New Model for Irregular Spaced Transaction Data[J]. Econometrica, 1998, 66 (5): 1 127-1 162.
  • 3Chou R Y. Forecasting Financial Volatilities with Extreme Values: the Conditional Autoregressive Range Model[J]. Journal of Money, Credit and Banking, 2005,67(3): 34-56.
  • 4Fan Jianqing, Yao Qiwei. Nonlinear Time Series: Nonparametric and Parametric Methods[M]. London: Springer- Verlag, 2005.
  • 5Nelson R. Stationarity and Persistence in the GARCH(1,1) Model[J]. Econometric Theory,1990, 47(6): 318-334.
  • 6Lee S W, Hansen B E. Asymptotic Theory for the GARCH (1, 1) Quasi-maximum Likelihood Estimator [J]. Econometric Theory,1994, 34(10): 29-52.
  • 7Lumsdaine R L. Asymptotic Properties of the Quasi-maximum Likelihood Estimator in GARCH(1,1) and IGARCH(1, 1) Models[J]. Econometrica,1996, 64(3): 575-596.
  • 8Andrews D W K. Generic Uniform Convergence[J]. Econometric Theory,1992, 26(8): 241-257.
  • 9Amemiy T. Advanced Econometrics[M]. Cambridge: Havard University Press,1985.
  • 10Billingsley P. Convergence of Probability Measure[M]. New York: Wiley,1968.

二级参考文献8

  • 1王佳妮,李文浩.GARCH模型能否提供好的波动率预测[J].数量经济技术经济研究,2005,22(6):74-87. 被引量:43
  • 2Ray Y.Chou,Forecasting Financial Volatilities with Extreme Values:The Conditional Autoregressive Range Model,Journal of Money,Credit,and Banking,2005,67 (3),34~56.
  • 3Robert F.Engle,Jeffrey R.Russell,Autoregressive Conditional Duration:A New Model For Irregularly Spaced Transaction Data,Econometrica,1998,66 (5),1127~1162.
  • 4Tim.Bollerslev,Ray.Y.Chou,Kenneth.F.Kroner,ARCH modeling in finance,Econometric Theory,1992,52,5~59.
  • 5Michael Parkinson,The Extreme Value for Estimating the Variance of the Rate of Return,The Journal of Business,1980,53 (1),61~65.
  • 6Daniel Nelson,Stationarityand Persistence in The GARCH (1,1) Model,Econometric Theory,1990,6,338~334.
  • 7Andrew A.Weiss,Asymptotic Theory For ARCH Models:Estimation and Testing,Econometric Theory,1986,2,107~131.
  • 8James D.Hamilton,Time series analysis,Princeton University Press,1994.

共引文献22

同被引文献42

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部