期刊文献+

基于近似牛顿方向的多区域无功优化解耦算法 被引量:27

A Decomposition Algorithm Applied to Multi-area Reactive-power Optimization Based on Approximate Newton Directions
下载PDF
导出
摘要 针对多区域电力系统的无功优化问题,提出了基于近似牛顿方向和GMRES算法的无功优化解耦算法。该算法以非线性原对偶内点法为基础,在迭代计算过程中构造近似牛顿方向,实现弱耦合系统的完全解耦,保证算法具有局部线性收敛特性,且其计算速度要比非线性原对偶内点法快。对于不能实现解耦的强耦合系统,以近似牛顿方向为初值和解耦对角阵作为预处理器,采用GMRES法求解,使算法具有良好的收敛性和较快的计算速度。以708节点系统作为试验系统验证所提算法的正确性和有效性,得到了满足所有等式和不等式约束的最优可行解。并以树型子系统分解法对其进行分解,对不同分解方案的计算结果进行了比较分析。 This paper presents a new decomposition algorithm for solving reactive-power optimization problem of multi-area power systems based on Generalized Minimal Residual (GMRES) method and approximate Newton directions. According to nonlinear primal-dual interior-point method, approximate Newton directions are constructed during iteration, and hence the weak coupling system can be fully decomposed. This decomposition method can converge locally to the optimum at a linear rate and is faster than the nonlinear primal-dual interior-point method. But strong coupling system, which can not be decoupled like the weak coupling one, can be further solved by means of a preconditioned GMRES algorithm. The approximate Newton direction and decoupled diagonal matrix provide initial values and preconditioner respectively for this algorithm. This preconditioned GMRES algorithm is fast and has a good convergence. Furthermore. Test cases based on a 708-bus system are used to validate the correctness and effectiveness of the proposed algorithm. At last, we obtain the optimization feasible solutions satisfying all equality and inequality constrains of test cases. Also a tree-like subsystem decomposition method is adopted to divide it and comparative studies for different decomposition schemes are reported.
出处 《中国电机工程学报》 EI CSCD 北大核心 2007年第25期18-24,共7页 Proceedings of the CSEE
基金 国家自然科学基金项目(50277013) 广东省自然科学基金项目(011648)~~
关键词 多区域电力系统 无功优化 非线性原对偶内点法 分解 广义极小化残余法 近似牛顿方向 multi-area power systems reactive-power optimization: nonlinear primal-dual interior-point method decomposition GMRES: approximate newton direction
  • 相关文献

参考文献16

  • 1Wang X,Song Y H,Lu Q.Lagrangian decomposition approach to active power congestion management across interconnected regions[J].IEE Proceedings-Gener.,Transm.and Distrib.,2001,148(5):497-503.
  • 2Conejo A J,Aguado JA.Multi-area coordinated decentralized DC optimal power flow[J].IEEE Trans on Power Systems,1998,13(4):1272-1278.
  • 3Losi A,Russo M.On the application of the auxiliary problem principle[J].Journal of Optimization Theory and Applications,2003,117(2):337-396.
  • 4Baldick R,Kim B H,Chase C,et al.A fast distributed implementation of optimal power flow[J].IEEE Trans on Power Systems,1999,14(3):858 -864.
  • 5Kim B H,Baldick R.Coarse-grained distributed optimal power flow[J].IEEE Trans on Power Systems,1997,12(2):932-939.
  • 6Hur D,Park J K,Kim B H.Evaluation of convergence rate in the auxiliary problem principle for distributed optimal power flow[J].IEE Proceedings-Gener.,Transm.and Distrib.,2002,149(5):525-532.
  • 7Kim B H,Baldick R.A comparison of distributed optimal power flow algorithms[J].IEEE Trans on Power Systems,2000,15(2):599-604.
  • 8程新功,厉吉文,曹立霞,刘雪连.基于电网分区的多目标分布式并行无功优化研究[J].中国电机工程学报,2003,23(10):109-113. 被引量:73
  • 9Conejo A J,Nogales F J,Prieto F J.A decomposition approximate procedure based on an approximate Newton direction[J].Mathematical Programming,Series A,2002,93(3):495-515.
  • 10Nogales F J,Prieto F J.A decomposition methodology applied to the mutil-area optimal power flow problem[J].Annals of Operations Research,2003,120(1-4):99-116.

二级参考文献31

  • 1李乃湖.计及整型控制变量的电压一无功功率优化[J].电力系统自动化,1994,18(12):5-11. 被引量:17
  • 2邓佑满,张伯明,相年德.配电网络电容器实时优化投切的逐次线性整数规划法[J].中国电机工程学报,1995,15(6):375-383. 被引量:45
  • 3刘天琪,滕福生.电网在线安全分析的并行处理方法[J].成都科技大学学报,1996(1):29-35. 被引量:1
  • 4[2]Wang X,Song Y H,Lu Q.A coordinated real-time optimal dispatch method for unbundled electricity markets[J].IEEE Trans on Power Systems.2002,17 (2):482-490
  • 5[4]Sun D I,Ashley B,Brewer B,et al.Optimal power flow by Newton approach [J].IEEE Trans On PAS,1984,103 (10):2864-2880.
  • 6[5]Maria G A,Findlay J A.A Newton optimal power flow program for Ontario hydro EMS [J].IEEE Trans on Power Systems,1987,2 (3):576-584.
  • 7[6]Chang S K,Marks G E,Kato K.Optimal real-time voltage control [J].IEEE Trans on Power Systems,1990,5 (3):750-758.
  • 8[8]Torres G L,Quintana V H,Optimal power flow by a nonlinear complementarity method [J].IEEE Trans on Power Systems,2000,15 (3):1028-1033.
  • 9[9]Conejo A J,Nogales F J,Frieto F J.A decomposition procedure based on approximate Newton direction [J].Math.Program.2002,93:495-515.
  • 10[10]Harker P T,Pang J S.Finite-dimensional variational inequality and noniinear complementarity problems:Asurvey of theory,algorithms and applications [J].Mathematical Programming,1990,48:161-220.

共引文献207

同被引文献269

引证文献27

二级引证文献349

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部