期刊文献+

基于平均值插值求解势问题的宏单元法 被引量:1

MACRO-ELEMENT APPROACH BASED ON MEAN VALUE INTERPOLATION FOR SOLVING POTENTIAL PROBLEMS
原文传递
导出
摘要 在有限元法中采用宏单元(大单元)可以减少单元数量,进而降低网格生成的工作量,提高计算效率.本文利用多边形上的平均值插值构造宏单元的形函数,采用标准的Galerkin法推导出求解二维势问题的宏单元法.给出了宏单元形函数偏导数计算的方法.运用提出的宏单元法,分别采用多边形宏单元和含有任意数量边节点的宏单元,对一些二维势问题进行了分析计算.数值算例表明,本文提出的宏单元法具有较好的计算精度. Using macro-element(large element)in finite element method,both the number of nodes and total number of degrees of freedom are reduced largely.So the meshes generation workload is decreased and the computational efficiency is increased. In this paper the shape functions of macro-element is constructed using mean value interpolation of polygon.Applying the well-known Galerkin procedure,the macro-element approach is derivative for 2D potential problems.The computational method of partial derivatives of shape functions for macro-elements is given.The shape functions constructed by mean value interpolation are neither polynomial forms nor rational functions forms. Applying the proposed macro-element approach,some 2D potential problems are analysis and computation by using polygonal macro-element or including arbitrary number side-nodes macro-element. Numerical results sustain the proposed method,which is successfully compared with exact analytical solutions.
出处 《数值计算与计算机应用》 CSCD 2007年第3期179-187,共9页 Journal on Numerical Methods and Computer Applications
基金 国家自然科学基金(10472058) 山东建筑工程学院科研基金
关键词 平均值插值 多边形宏单元 宏单元法 边节点 势问题 mean value interpolation,polygonal macro-element,macro-element approach,side node,potential problem
  • 相关文献

参考文献18

  • 1Jirousek J. Basis for development of large elements locally satisfying all field equations[J]. Computer Methods in Applied Mechanics and Engineering, 1978, 14: 65-92.
  • 2Jirousek J, Theodorescu P. Large finite elements method for the solution of problems in theory of elasticity[J]. Computer & Structure, 1982, 15(5): 575-587.
  • 3Irons B M. Engineering application of numerical integration in stiffness method[J]. Journal of AIAA, 1966, 14(11): 2035-2037.
  • 4El-Zafrany A, Cookson R A. Derivation of Lagrangian and Hermitian shape functions for quadrilateral elements[J]. International Journal for Numerical Methods in Engineering, 1986, 23: 1939- 1958.
  • 5Zheng Zhaobei, Xia Zhaoqian, Coons' surface method for formaulation of finite element of plates and shells[J]. Computer & Structure, 1987, 27(1): 79-88.
  • 6Provatidis Ch, Kanarachos A. Performance of a macro-FEM approach using global interpolation (Coons') functions in axisymmetric potential problems[J]. Computer & Structure, 2001, 79: 1769- 1779.
  • 7Provatidis Ch. Coons-patch macroelements in potential Robin problems[J]. Forschung im Ingenieurwesen, 2001, 67:19-26.
  • 8Provatidis Ch. Analysis of axisymmetric structures using Coons' interpolation[J]. Finite Elements in Analysis and Design, 2003, 39: 535-558.
  • 9Provatidis Ch. Solution of two-dimensional Poisson problems in quadrilateral domains using transfinite Coons interpolation[J]. Communications in Numerical Methods in Engineering, 2004, 20: 521-533.
  • 10Wachspress E L. A rational finite element basis[M]. New York: Academic Press, Inc., 1975.

二级参考文献52

  • 1钱俊,龙驭球.三维切口尖端应力应变场[J].应用数学和力学,1994,15(3):199-208. 被引量:5
  • 2孙建恒,龙驭球.几何非线性广义协调三角形板单元[J].工程力学,1996,13(4):9-19. 被引量:4
  • 3孙建恒,龙驭球.用三角形广义协调元分析任意形状板的大挠度问题[J].工程力学,1996,13(A01):135-140. 被引量:1
  • 4孙建恒,龙志飞.几何非线性广义协调四边形板单元[J].工程力学,1997,14(2):43-51. 被引量:4
  • 5Ghosh, S. Mallett R L. Voronoi Cell finite elements[J]. Computers & Structures, 1994, 50(1), 33-46.
  • 6Ghosh, S. Moorthy S. Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method[J]. Comput Methods Appl Mech Engrg, 1995, 121, 373-409.
  • 7Ghosh S. , Lee K, Moorthy S. Multiple scale analysis of heterogeneous elastic structures using homogenization theory and Voronoi Cell finite element method[J]. Int J Structures, 1995, 27-62.
  • 8Belikov V V, Ivanov V D, Kontorovich V K, Korytnik S A, Semenov A Y. The non-Sibson interpolation: a new method of interpolation of the values of a function on an arbitrary set of Doints[J]. Computational Mathematics and Mathematical Physics, 1997, 37(1) :9-15.
  • 9Belikov V V, Semenov A Y. Non-Sibsonian interpolation on arbitrary system of points in Euclidean space and adaptive isolines generation[J]. Applied Numerical Mathematics. 2000, 32:371-387.
  • 10Semenov A Y, Belikov V V. New non-Sibsonian interpolation on arbitrary system of points in Euclidean space[C]. In: 15^th IMACS World Congress. Vol.2, Numerical Mathematics, Wissen Techn Verlag, Berlin, 1997, 237-242.

共引文献28

同被引文献7

引证文献1

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部