期刊文献+

关于二维球面上的Ricci流的一个注记(英文)

A Remark on the Ricci Flow on the 2-Sphere
下载PDF
导出
摘要 给出Hamilton和Chow关于二维球面上的Ricci流的一个定理的新证明.这个证明结合了Hamilton关于Ricci流的紧性定理和二维ancientκ-解的分类和Perelman的非塌缩定理. In this short note we give a new proof of a theorem of Hamilton and Chow on the Ricci flow on the 2-sphere. The proof combines Hamilton's compactness theorem and his classification of 2- dimensional ancient to-solution of Ricci flow with Perelman's no local collapsing theorem.
作者 黄红
出处 《数学研究》 CSCD 2007年第3期248-250,共3页 Journal of Mathematical Study
基金 NSFC10371008
关键词 Rieei流 紧性定理 ANCIENT k-解 非塌缩定理 Ricci flow compactness theorem ancient k-solution no local collapsing theorem
  • 相关文献

参考文献11

  • 1Hamilton R. Three manifolds with positive Ricci curvature. J. Diff. Geom. 1982, 17: 255--306.
  • 2Hamilton R. The Ricci flow on surfaces. Contemp. Math. 1988, 71 :237--261.
  • 3Chow B. The Ricci flow on the 2-sphere. J. Diff. Geom. 1991, 33:325--334.
  • 4Bartz J, Struwe M, Ye R. A new approach to the Ricci flow on S^2. Ann. Scuola Norm. Sup. Pisa CI. Sci. 1994, 21(3):475--482.
  • 5Hamilton R. An isoperimetric estimate for the Ricci flow on the two-sphere, in Ann. Math. Studies 137, ed. T. Bloom, et. al. , Princeton Univ. Press 1996.
  • 6Perelman G. The entropy formula for the Ricci flow and its geometric applications, ar Xiv:math. DG/ 0211159(2002).
  • 7Hamilton R. A compactness property for solutions of the Rieei flow. Amer. J. Math. 1995, 117:545-- 572.
  • 8Chow B,. Lu P, Ni L. Hamilton's Ricci Flow. Amer. Math. Soe. and Science Press, To appear 2006.
  • 9Topping P. Lectures on the Ricci Flow, LMS Lecture Notes 325, Lond. Math. Soe. and Cambridge Univ. Press, to appear.
  • 10Hamilton R. Formation of singularities in the Ricci flow, in Surveys in Diff. Geom. 1995, 2:7--136.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部